Читать онлайн Радость познания бесплатно

Радость познания

Richard P. Feynman

THE PLEASURE OF FINDING THINGS OUT

© Michelle Feynman and Carl Feynman, 1999

© Вступительное слово, комментарии к главам, примечания. Jeffrey Robbins, 1999

© Перевод. Т.А. Ломоносова, 2012

© Издание на русском языке AST Publishers, 2019

Вступительное слово Фримэна Дайсона

Люблю почти до преклонения

«Я так любил этого человека – до невозможности, почти до преклонения», – писал Бен Джонсон, драматург эпохи королевы Елизаветы. «Этим человеком» был друг и наставник Джонсона Уильям Шекспир. Оба они, и Джонсон, и Шекспир, были успешными драматургами – усердный, хорошо образованный Джонсон и стремительный, гениальный Шекспир. Они не завидовали друг другу. Шекспир был девятью годами старше, лондонские подмостки уже были заполнены его шедеврами, когда Джонсон только начал писать. Шекспир, по словам Джонсона, был честным, открытым и свободолюбивым человеком, он оказывал своему юному другу практическую помощь и поддержку. Наиболее ощутимую поддержку он оказал, сыграв одну из ведущих ролей в первой пьесе Джонсона «Всяк в своем нраве», поставленной в 1598 году. Пьеса имела громкий успех и стала путевкой для профессиональной карьеры Джонсона. Джонсону было тогда 25, Шекспиру – 34. После 1598 года Джонсон продолжал писать поэмы и пьесы, многие из которых были поставлены труппой Шекспира. Сам Джонсон стал знаменит как поэт и ученый-гуманитарий и на закате жизни удостоился чести быть похороненным в Вестминстерском аббатстве. Однако он никогда не забывал своего долга перед старым другом. Когда умер Шекспир, Джонсон написал поэму «Памяти моего горячо любимого великого автора мистера Уильяма Шекспира», в которой содержатся широко известные строки: «Он был не на годы – на все времена».

  • Латынь и греческий ты мало знал,
  • Ты к славе не стремился, не искал.
  • Все почести Софокла и Эсхила —
  • Их не сравнить с твоих трагедий силой!
  • Мы слушаем твоих сонетов россыпь,
  • Живи, неси своих котурнов поступь!
  • Своим творением была горда Природа,
  • В одежды облекла тончайших линий оду!
  • О, мой Шекспир! Твой стих и мудр, и нежен,
  • Изыскан стиль, что у других небрежен.
  • В изгибы бытия направлен острый взор.
  • О, гений! Ты паришь среди долин и гор.
  • В трудах, в поту провел ты столько лет,
  • Для этого поэт рождается на свет[1].

Что общего у Джонсона и Шекспира с Ричардом Фейнманом? Я мог бы сказать словами Джонсона буквально следующее: «Я так любил этого человека – до невозможности, почти до преклонения». Судьба подарила мне огромную удачу – встретить Ричарда Фейнмана. Он был моим наставником. Я, усердный и хорошо подготовленный студент, перебрался в 1947 году из Англии в Америку в Корнеллский университет и был буквально очарован порывистым гением – Ричардом Фейнманом. С самонадеянностью юности я решил, что мог бы сыграть роль Джонсона в фейнмановском Шекспире. Я не ожидал встретить Шекспира на американской земле, однако мне не составило никакого труда распознать его при встрече.

Перед тем как познакомиться с Фейнманом, я успел опубликовать некоторое количество математических статей, полных хитроумных трюков, но совершенно незначительных. Когда я познакомился с Фейнманом, то сразу же понял, что попал в другой мир. Его не интересовали публикации популярных статеек. Он боролся более яростно, чем кто-либо из ранее известных мне ученых, за понимание существа работы, выстраивая всю физику заново от начала и до конца. Мне повезло встретиться с ним к концу его восьмилетнего сражения. Новая физика, которую он придумал, будучи студентом Джона Уилера семь лет назад, впоследствии привела к единому взгляду на природу, взгляду, который он назвал «пространственно-временным подходом». В 1947 году теория была еще не завершена, полна противоречий и не связанных между собой концов, однако я сразу же увидел, что она должна быть правильной. Я ловил каждый удобный случай послушать обсуждения Фейнмана, научиться «плавать» в потоке его идей. Он любил обсуждения и был рад мне как слушателю. Таким образом, мы стали друзьями на всю жизнь.

В течение года я наблюдал, как Фейнман развивал свой способ описания природы с помощью картинок и диаграмм, пока он не связал все концы с концами и не устранил противоречия. Затем он начал вычислять разные эффекты, используя в качестве руководящего принципа свои диаграммы. С ошеломляющей скоростью он был способен вычислять физические величины, которые можно было сравнить непосредственно с экспериментом. Эксперименты согласовывались с его цифрами. Летом 1948 года мы могли выразить истину словами Джонсона: «Природа и сама гордится его проектами и получает удовольствие, примеряя его тончайшие одежды».

В течение того же года, когда мы гуляли и разговаривали с Фейнманом, я изучал также работы физиков Швингера и Томонаги, которые следовали более традиционным путем и пришли к аналогичным результатам. Швингер и Томонага независимо достигли цели, используя более сложные и трудоемкие методики для вычисления тех же величин, которые Фейнман получал непосредственно из своих диаграмм. Швингер и Томонага не построили новую физику. Они воспользовались известной физикой и только ввели новые математические методы для получения физических результатов. Когда стало ясно, что результаты их вычислений согласуются с Фейнманом, я понял, что представился уникальный случай объединить все три теории вместе. Я написал статью под заголовком «Теории излучения Томонаги, Швингера и Фейнмана», объяснив, почему теории выглядели различными, но основывались на одних и тех же положениях. Моя статья была опубликована в журнале «Physical Review» в 1949 году и сыграла такую же решающую роль в моей профессиональной карьере, как у Джонсона пьеса «Всяк в своем нраве». Мне было тогда, как и Джонсону, 25 лет. Фейнману – 31, на три года меньше, чем Шекспиру в 1598 году. Я старался относиться к своим главным героям с одинаковым почтением, но в душе знал, что Фейнман был величайшим из трех и что основная цель моей работы – донести его революционные идеи до физиков всего мира. Фейнман активно поддерживал меня в публикации его идей и ни разу не выразил недовольства, что я перехватил у него инициативу. Он был главным актером в моей пьесе.

Я привез из Англии одну из своих драгоценных книг «Совершенный Шекспир» Довера Уилсона – краткую биографию Шекспира со множеством цитат из Джонсона. Книга Уилсона по замыслу не относилась ни к художественной, ни к исторической литературе, а представляла нечто среднее между ними. Она основывалась на свидетельствах очевидцев, Джонсона и других современников Шекспира. Но чтобы воспроизвести жизнь Шекспира, Уилсон задействовал свое воображение, основанное на скудных исторических документах. В частности, самое раннее свидетельство того, что Шекспир участвовал в пьесе Джонсона, следует из документа, датированного 1709 годом, т. е. более чем через сто лет после указанного события. Нам известно, что Шекспир был знаменит как актер и как писатель, и я не вижу причин сомневаться в истории, передаваемой из поколения в поколение и рассказанной Уилсоном.

К счастью, документальные свидетельства о жизни и размышлениях Фейнмана не так скудны. Данная книга – собрание документов, представляющих настоящий голос Фейнмана, записанный на его лекциях и в случайных записях. Эти неофициальные документы предназначены скорее широкой аудитории, а не его научным коллегам. В них мы видим Фейнмана таким, каким он был на самом деле, – с неизменной легкостью рассматривающим разные идеи, но с исключительной серьезностью относящимся к существенным для него вопросам. В проблемах, имеющих для него значение, он был предельно честен, независим, готов признать собственную некомпетентность. На протяжении всего жизненного пути он не признавал никакой иерархии и получал удовольствие от простого дружеского общения с людьми.

Кроме своей исключительной увлеченности наукой, Фейнман любил пошутить и был не чужд обычных человеческих радостей. Через неделю после знакомства с ним я описал его в письме к родителям как «полугения и полушута». Между своими героическими усилиями в борьбе за понимание законов природы он расслаблялся в обществе друзей, играл на барабанах бонго, развлекал окружающих розыгрышами и всевозможными историями. Его умение объединять серьезное и смешное в чем-то роднит его с Шекспиром. В книге Уилсона меня покорило свидетельство Джонсона:

«Когда он садился писать, для него ночь сливалась с днем; он работал без отдыха, не обращая внимания ни на что, пока не падал в обморок от усталости. Потом он заканчивал работу, снова переключался на спорт, становился свободнее, «отпускал поводья»; и тогда уже было почти безнадежно привлечь его к книге, но стоило ему начать писать, как он опять с легкостью становился решительным и серьезным».

Таким был Шекспир, таким же был и Фейнман, которого я знал и любил, – человек, перед которым я преклонялся.

Фримен Дж. Дайсон Институт перспективных исследований Принстон, Нью-Джерси

Предисловие редактора

Недавно я присутствовал на лекции в знаменитой лаборатории Джефферсона Гарвардского университета. Лектором была доктор Лин Хау из института Роланда, которая только что провела эксперимент, о котором сообщалось не только в известном научном журнале «Nature», но также и на первой полосе «Нью-Йорк таймс». В эксперименте она (со своей исследовательской группой студентов и сотрудников) пропустила лазерный пучок через новый вид материи, так называемый бозе-эйнштейновский конденсат (причудливое квантовое состояние, в котором сгусток из атомов, охлажденных почти до абсолютного нуля, практически полностью прекращает двигаться, ведет себя подобно единой частице), который замедлил данный пучок света до невероятно малой скорости, составляющей 38 миль в час. Свет, который обычно распространяется в вакууме с головокружительной скоростью 186 000 миль в секунду, или 669 600 000 миль в час, обычно замедляется при прохождении через любую среду, например воздух или стекло, но только на долю процента от его скорости в вакууме. Проделайте арифметические выкладки, и вы увидите, что 38 миль в час составляют одну шестимиллионную процента от скорости света в вакууме. Это как если бы Галилей бросал пушечные ядра с Пизанской башни, и они падали бы на землю через два года.

Я ушел с лекции ошеломленным (думаю, даже Эйнштейн был бы потрясен). Впервые в жизни я испытал чуточку того, что Ричард Фейнман называл «кайфом от открытия», внезапное ощущение (возможно, сродни столкновению со сверхъестественным), что я постиг удивительную новую идею, что-то новое в мире, что я присутствовал в момент, имеющий важнейшее научное значение. Это было ощущение не менее драматическое и волнующее, чем то, что испытал Ньютон, когда таинственная сила, которая привела к падению апокрифического яблока ему на голову, оказалась той же силой, что заставляет двигаться Луну по орбите вокруг Земли; или ощущение Фейнмана, когда он показал, что первый шажок на пути к пониманию природы состоит во взаимодействии света и вещества, за что в дальнейшем он получил Нобелевскую премию.

Сидя в аудитории, я почти чувствовал присутствие Фейнмана. Мне казалось, что он смотрит поверх моего плеча и шепчет мне на ухо: «Видишь? Вот почему ученые так упорны в своих исследованиях, вот почему мы так отчаянно сражаемся за каждую частичку знания, просиживая ночи напролет в поисках ответа на вопрос, карабкаемся по крутым препятствиям к следующему витку понимания, чтобы окончательно добраться до радостного момента «кайфа от открытия», составляющего часть удовольствия постижения сути вещей»[2]. Фейнман всегда говорил, что занимается физикой не ради славы или наград и премий, а для забавы, ради получения настоящего удовольствия, постигая, как устроен мир, – именно это и заставляло его работать.

Наследие Фейнмана – это его погружение в науку и преданность ей: ее логике, методам, ее отказу от догм и бесконечной способности сомневаться. Фейнман верил, что наука при ответственном отношении к ней может быть не только забавной, но и принести неоценимую пользу всему человеческому сообществу. И как все великие ученые, Фейнман любил делиться своим удивлением перед законами природы с коллегами и непрофессионалами. Нигде фейнмановская страсть к знанию не выражена яснее, чем в этом наборе его коротких работ (большинство из них раньше публиковались, некоторые – нет).

Лучший способ оценить тайны мастерства Фейнмана – это прочитать эту книгу; здесь вы найдете широкий спектр вопросов, над которыми он размышлял. Он рассуждает не только о физике – где ему не было равных, – но также о религии, философии, о своем неприятии академического поприща; о будущем вычислительной техники, о нанотехнологии, в которой он был пионером; о скромности и уместности шутки в науке, о будущем науки и цивилизации; о том, как истинные ученые должны видеть мир. А также о проблемах трагической бюрократической слепоты, которая привела к несчастью с космическим челноком «Челленджер» – речь идет о его докладе с заголовком, сделавшим имя Фейнмана почти нарицательным.

Удивительно, но эти работы пересекаются лишь в незначительной части; в тех немногих местах, где рассказ повторяется в другой истории, я позволил себе вольность выбросить один из двух эпизодов, чтобы устранить для читателя повторы. Я ставил скобки (…) для указания, откуда удалена повторная «жемчужная россыпь».

Фейнман обладал весьма своеобразным отношением к правильной грамматике, что становится очевидным из большинства его заметок, которые записаны на основе его лекций или интервью. Поэтому, чтобы сохранить фейнмановский дух, я позволил себе оставить неправильные грамматические обороты в его фразах. Тем не менее там, где плохая или случайная транскрипция (транслитерация) делала слово или фразу малопонятными или затруднительными, я редактировал их, делая понятными для читателя. Надеюсь, что получившийся результат не утратил фейнмановского духа.

Ему рукоплескали, когда он был жив, теперь благоговеют перед его памятью; он продолжает оставаться источником мудрости для людей с самым разным мировоззрением. Надеюсь, что сокровищница его лучших выступлений, интервью и статей побудит к действию новое поколение почитателей этого уникального человека и его многогранного ума.

Итак, читайте, наслаждайтесь, не бойтесь иногда громко рассмеяться или извлечь пару жизненных уроков; вдохновляйтесь и удивляйтесь; и прежде всего испытайте радость познания истины рядом с блестящей неординарной личностью.

Я хотел бы поблагодарить Мишель и Карла Фейнман за их щедрость и постоянную поддержку, приходящую с обоих берегов океана; доктора Джуди Гудстейн, Бонни Лудт и Шелли Эрвин из архивов Калтеха за их исключительно важную помощь и гостеприимство; и особенно профессора Фримена Дайсона за его изысканное и поучительное вступление.

Я хотел бы также выразить благодарность Джону Гриббину, Тони Хэй, Мелани Джексон и Ральфу Лейтону за их превосходные советы на всем протяжении работы над этой книгой.

Джеффри Роббинс, Рединг, штат Массачусетс, сентябрь, 1999 г.

1. Радость познания сути вещей

Это отредактированный вариант интервью, взятого у Фейнмана в 1981 году для телевизионной программы «Горизонт» на канале Би-би-си, показанный в Соединенных Штатах в серии «Nova». К тому времени за его плечами была уже большая часть жизни (он умер в 1988 году), и он размышлял, опираясь на свой опыт и достижения, рассматриваемые через призму лет, что практически невозможно для молодого человека. В результате получилась откровенная, непринужденная и очень личная дискуссия на волновавшие его темы: почему название чего-либо ничего не говорит нам о сути самого предмета; как он и ученые-атомщики его коллеги по Манхэттенскому проекту, могли выпивать за успех чудовищного оружия, которое они создали, а в это время в другой части мира, в Хиросиме, тысячи их собратьев уже погибли или погибали от этого оружия; и почему Фейнман мог обойтись без Нобелевской премии.

Красота цветка

У меня был друг, художник, и он иногда высказывал точку зрения, с которой я никак не мог согласиться. Он держал цветок и говорил: «Смотри, как он красив». У меня не было возражений. Он продолжал: «Погляди, я как художник могу увидеть, насколько он красив, а ты как ученый – ну, для тебя все это очень далеко, а цветок становится просто скучным предметом». Думаю, он был помешан на красоте. Однако красота, которую видит он, доступна каждому, и мне в том числе. Хотя допускаю, что я не такой рафинированный эстет, как он, но и я способен оценить красоту цветка. В то же время я вижу в цветке гораздо больше, чем он. Я могу представить его клеточную структуру, сложные взаимодействия внутри клеток тоже обладают своей красотой. Я имею в виду не только красоту в масштабах одного сантиметра, существует также красота в меньших масштабах, во внутренней структуре. Возьмем другой процесс. Удивительный факт, что краски цветка вырабатываются, чтобы привлечь насекомых для его опыления – значит, насекомые могут видеть цвет. Напрашивается вопрос: эстетические чувства существуют и в низших формах? Почему эстетические? Всевозможные интересные вопросы доказывают, что научное знание лишь добавляет благоговейного трепета перед цветком. Научное знание только добавляет; не понимаю, как оно может что-то вычитать.

Бегство от гуманитарных наук

Я всегда был очень односторонним в науке и, когда был моложе, концентрировал на ней почти все свои усилия. У меня не было времени учиться и не было достаточного терпения для так называемых гуманитарных наук, хотя даже в университете существовали гуманитарные дисциплины, которые я должен был выбирать. Я почитал за лучшее как-нибудь избежать их изучения и зубрежки. И только много позже, когда стал старше, я смог делать передышки и начал слегка разбрасываться. Я научился рисовать и немного читал, но я действительно все еще очень однобокий человек и многого не знаю. У меня ограниченный ум, и я использую его целенаправленно.

Тираннозавр в окне

У меня дома была Британская энциклопедия, и даже когда я был маленьким мальчиком, отец, бывало, сажал меня на колени и читал что-нибудь из энциклопедии. Мы читали, рассуждали о динозаврах, а может быть, это были бронтозавры или еще кто-нибудь, или беседовали о короле тираннозавров. И он говорил что-нибудь вроде: «Этот предмет имеет двадцать пять футов в высоту, а голова его шесть футов в поперечнике. Понял?» Затем он останавливался и говорил: «Давай подумаем, что это значит. Подумай, если он стоит на нашем переднем дворе, его высоты достаточно, чтобы просунуть голову в окно, но это не совсем так – его голова немного шире, и когда он будет пролезать, то разобьет окно».

Все, о чем мы читали, переводилось на язык, как это лучше сделать на самом деле, – так я учился что-то делать. Из всего, что я прочитывал, я старался вычислить, что это означает в действительности и как будет звучать на языке реальности. Таким способом (СМЕЕТСЯ) ребенком я обычно читал энциклопедию, но с переводом. Знаете, мне было очень интересно, что существуют животные такого размера – но как следствие, я не боялся, что одно из них залезет ко мне в окно; я просто думал, было бы очень-очень интересно понять, как все они вымерли, и до сего времени никто не знает почему.

Обычно мы ездили в Катскильские горы. Мы жили в Нью-Йорке, и горы были тем местом, куда летом приезжали люди; в будни отцы уезжали на работу и возвращались только на выходные. Когда приезжал мой отец, он брал меня на прогулку в лес и рассказывал о различных интересных штуковинах, которые происходили в лесу, и я их сейчас же объяснял. Однако матери моих сверстников, наблюдая за нами, конечно же, думали, как было бы здорово, если бы и другие отцы брали своих сыновей на прогулку, и они пытались заставить остальных отцов, но те поначалу никуда не ходили и хотели, чтобы мой отец собирал всех ребятишек, но он отказывался, потому что у нас были особенные отношения – общие личные разговоры о сути вещей. Итак, все кончилось тем, что в следующие выходные другие отцы вынуждены были тащить своих детей на прогулку. А в следующий понедельник, когда они вернулись на работу и дети играли на лугу, один из ребят спросил меня: «Видишь ту птичку, что это за птичка?» И я ответил: «У меня нет ни малейшего представления о том, что это за птичка». Он говорит: «Это коричневый певчий дрозд. Вот так – твой отец ничего тебе не рассказывает». А все было наоборот: мой отец учил меня. Глядя на птицу, он говорил: «Ты знаешь, что это за птица? Это коричневый певчий дрозд, но в Португалии его называют так-то, в Италии – так-то, в Китае – так-то, а в Японии – так-то», – и т. д. и т. п. «Теперь, – говорил он, – ты знаешь, как звучит на всех языках имя этой птицы, и когда ты покончишь со всем этим, ты ровным счетом ничего не будешь знать об этой птице. Ты только знаешь о людях в разных местах земли и что они называют птицей. А теперь, – продолжал он, – давай посмотрим на эту птицу».

Он учил меня подмечать существенное. Однажды я был поглощен игрой с маленькой тележкой для детских игр, огороженной со всех сторон – мы называли ее «экспресс-вагон», – дети могли толкать ее со всех сторон. Помню, в тележке находился мячик, да, именно мячик. Я толкал тележку и заметил кое-что в движении мяча. Тогда я пошел к отцу и заявил: «Скажи, па, я заметил кое-что: когда я толкаю тележку, мячик катится обратно к концу тележки, а когда я тяну ее вперед и внезапно останавливаюсь, мячик катится к переднему краю тележки». И спросил: «Почему так происходит?» Отец ответил: «Этого никто не знает». И продолжил: «Общий принцип состоит в том, что движущиеся предметы стремятся сохранить движение, а неподвижные склонны оставаться неподвижными, пока ты сильно по ним не ударишь». И прибавил: «Это свойство называется инерцией, но никто не знает, почему это правильно». Теперь я глубоко понимаю это – тогда он не дал мне названия, он знал разницу между знанием названия чего-то и знанием сути чего-то, – я усвоил этот урок очень рано. Отец дальше пояснил: «Если ты всмотришься повнимательнее, то увидишь, что мячик не устремляется к концу тележки, это конец тележки, которую ты тянешь против мяча, движется; а мяч все еще стоит на месте или в конечном счете от трения начинает реально двигаться вперед, а не назад». Итак, я побежал обратно к маленькой тележке, снова установил мячик и потянул тележку под ним, глядя во все глаза, и увидел – отец действительно был прав – мяч никогда не двигался в тележке назад, когда я тянул ее вперед. Он двигался назад относительно тележки, но относительно боковой дорожки он сдвигался немного вперед, тележка догоняла его. Итак, это был метод, которому я научился у отца, с разными примерами и обсуждениями, без всякого давления, просто в ходе приятных интересных бесед.

Алгебра для практичного человека

В то время мой кузен, который был на три года меня старше, учился в средней школе и испытывал значительные трудности с алгеброй. К нему приходил репетитор, а мне позволяли сидеть в уголке, пока (СМЕЕТСЯ) репетитор пытался научить моего кузена алгебре, задачам вроде 2x плюс что-то. После урока я сказал кузену: «Чем вы там занимались? Видишь ли, я слышал, что он рассказывал об x». Он говорит: «Если 2x + 7 равно 15, то как найти, чему равен x?» Я отвечаю: «Он равен 4». Он заявляет: «Ну да, но ты сделал это арифметически, а должен – алгебраически». Вот почему мой кузен никак не мог освоить алгебру – не было метода. К счастью, я учил алгебру не в школе и знал, что вся идея заключалась в том, чтобы найти x; какая разница, как вы это сделали. Понимаете, нет такой проблемы – сделать арифметически или сделать алгебраически. Это ошибочная вещь, которую изобрели в школе, так что дети, которые должны учить алгебру, могут все перепутать. В школе изобрели набор правил, которые, если вы следуете им бездумно, могут привести к ответу: вычтите 7 с обеих сторон; если у вас есть множитель, поделите на него обе стороны и т. п. – целый набор шагов, с помощью которых вы могли бы получить ответ, если не понимаете, что вы пытаетесь сделать.

Существует серия книг по математике. Первая – «Арифметика для практичного человека», далее следует «Алгебра для практичного человека» и последняя – «Тригонометрия для практичного человека». Я выучил тригонометрию для практичного человека по этой книге. Вскоре я опять забыл ее, поскольку понял ее не очень хорошо, но серия продолжала выходить, и библиотека собиралась получить «Исчисление для практичного человека». К этому моменту я знал, читая энциклопедию, что исчисление было важным предметом и к тому же интересным, я был обязан выучить его. Теперь я стал старше, мне было около тринадцати; книжка по исчислению наконец вышла, и я был так воодушевлен, что пошел за ней в библиотеку, а библиотекарь посмотрела на меня и сказала: «О, ты совсем ребенок, зачем тебе такая книга – она для взрослых?» То был один из немногих случаев в моей жизни, когда мне было неловко, – я соврал, сказав, что книжка для моего отца, он ее отобрал. Так или иначе, я принес ее домой, выучил из нее исчисление и попробовал объяснить его отцу, он осилил ее начальный этап и пришел к заключению, что она запутанная, и мне немного поднадоело его обучать. Я удивился, что он не понял; мне казалось, что в книге все относительно просто и ясно, – а он не понял. Это был первый случай, когда я узнал в некотором смысле больше, чем отец.

Эполеты и Папа Римский

Есть еще кое-что, чему отец научил меня – кроме физики (СМЕЕТСЯ). Мы обсуждали, можно ли выражать неуважение пользующимся уважением персонам… к персонам определенного рода. Например, когда я был маленьким мальчиком, в «Нью-Йорк таймс» стали выходить ротографии – печатные картинки в газетах. Отец обычно сажал меня на колени, открывал картинку, это была ротография римского Папы, и на ней все склонялись перед ним. Отец говорил: «Посмотри-ка на этих людей. Здесь стоит только один человек, все остальные склонились перед ним. Подумай, в чем между ними разница? Этот один – Папа». Отец терпеть не мог Папу. И он пояснял: «Разница в эполетах. Конечно, не в случае Папы. Возьми, например, генерала – форма, положение, – но у этого человека такие же человеческие проблемы, он обедает, как и все остальные, принимает ванну, у него обычные проблемы, как у всех, – он простой человек. Почему все они склоняются перед ним? Только из-за его имени и его положения, из-за его формы, а не потому, что он сделал что-то особенное, или из-за его славы, или чего-нибудь в этом роде». Отец, кстати, занимался выпуском форменной одежды и потому знал, в чем разница между человеком в форме и человеком без формы; для него это были одни и те же люди.

Мне кажется, он был счастлив со мной. Хотя однажды, когда я возвратился из MIT (Массачусетского технологического института) – я учился там несколько лет, – он сказал мне: «Теперь ты стал образованным человеком. Есть один вопрос, в котором я никогда не мог до конца разобраться. Ты все это изучал и, надеюсь, сможешь объяснить мне». Я спросил, что он имеет в виду. И он ответил, что знает: когда атом переходит из одного состояния в другое, он излучает частицу света, называемую фотоном. Я сказал: «Совершенно верно». И отец продолжал: «А все-таки существовал фотон в атоме до того, как он излучился, или до того в нем не было никаких фотонов?» Я отвечаю: «Фотонов в атоме нет; просто, когда электрон совершает переход, возникает фотон». А он опять задает вопрос: «Хорошо, тогда откуда он берется, как появляется?» Не мог же я просто сказать ему: «Дело в том, что число фотонов не сохраняется, они рождаются благодаря движению электрона». Не мог я также попытаться объяснить ему нечто вроде: звук, который я издаю сейчас, не существовал во мне. Другое дело, мой маленький сын, который, когда начинал рассказывать, вдруг заявлял, что больше не может сказать определенного слова – это было слово «кошка», – потому что его словарный запас иссяк на слове «кошка» (СМЕЕТСЯ). Итак, у вас отсутствует запас слов, так что вы пользуетесь словами по мере надобности и просто строите их по ходу дела. В том же смысле нет запаса фотонов в атоме, и, когда фотоны появляются, они не появляются откуда-нибудь, – я не мог объяснить ему лучше. Его мой ответ не удовлетворил, учитывая, что я никогда не был способен объяснить тех вещей, которых он не понимал (СМЕЕТСЯ). Так что он остался недоволен – он посылал меня во все эти университеты, чтобы выяснить суть вещей, а я так ничего и не выяснил (СМЕЕТСЯ).

Приглашение делать бомбу

(В период работы над докторской диссертацией Фейнман был приглашен в проект по разработке атомной бомбы.)

Это вещь совершенно иного порядка. Это значило, что я должен был прекратить свою исследовательскую работу, которая была смыслом моей жизни, зачеркнуть потраченное на нее время и делать то, что, по моему мнению, было необходимо для защиты цивилизации. Правильно ли это? Я обсудил проблему с самим собой. Моя первая реакция состояла в том, что я не хочу прерывать текущую работу ради этого нового проекта. Конечно, существовала проблема морального толка, в том числе война. Я не слишком много с ней сталкивался, но мне становилось не по себе, когда я представлял, какое оружие предстоит сделать. И поскольку это могло стать реальностью – оно должно было стать реальностью. Подобное оружие могли создать и нацисты, поэтому я решил принять участие в проекте.

(В начале 1943 года Фейнман присоединился к команде Оппенгеймера в Лос-Аламосе.)

Скажу несколько слов относительно моральной стороны дела. Основной причиной начать проект послужила опасность со стороны Германии, которая и заставила меня примкнуть к разработке первой стадии в Принстоне, а затем в Лос-Аламосе к работе над бомбой. Тогда были сконцентрированы все усилия для превращения ее в самую мощную бомбу. Это был проект, над которым мы работали сверхнапряженно, объединив все силы. Как на любом проекте такого рода, вы работаете на конечный результат. Однако, работая, – возможно, это аморально – перестаете думать о причине, побудившей вас это делать. И когда причина исчезла, поскольку Германия потерпела поражение, мне не однажды приходила в голову мысль, что пора бы заново переосмыслить, почему я продолжаю заниматься этим. Должен признаться, в то время я так и не сделал этого.

Успех и страдания

(6 августа 1945 года атомная бомба взорвалась над Хиросимой.)

Единственной реакцией, которая мне запомнилась – возможно, я был ослеплен собственными переживаниями, – была страшная эйфория и возбуждение. Устраивались вечеринки, люди выпивали – был грандиозный контраст между тем, что происходило в Лос-Аламосе, и тем, что в то же время творилось в Хиросиме. Я был вовлечен в эту радостную вакханалию, тоже выпивал и развлекал коллег игрой на барабане, сидя на капоте машины, – сидел на капоте джипа и изо всех сил колотил по барабанам, подчиняясь всеобщему настроению, царившему в Лос-Аламосе, а в это время в Хиросиме люди умирали и боролись за жизнь.

У меня наступила очень сильная реакция после войны, реакция своеобразного характера, – возможно, это было вызвано самой бомбой или рядом психологических причин – я только что потерял жену, а может быть, было что-то еще. Но я помню, что сидел с матерью в ресторане в Нью-Йорке непосредственно после [Хиросимы], вглядывался в город и, зная, насколько большой была бомба в Хиросиме и какую огромную территорию она разрушила, собственно, зная о ней все, я вдруг подумал: «А что, если сбросить ее в районе 34-й улицы?» Она накроет и территорию, где мы сидим – кажется, это была 59-я улица, – и все люди будут убиты, все здания уничтожены, а ведь существует не одна такая бомба. Легко продолжить их производство – и все живое на земле будет обречено. Эта мысль зародилась у меня очень рано, раньше, чем у других, более оптимистично настроенных людей. Мне казалось, что международные отношения и характер поведения людей не отличаются от существовавших раньше и что этот путь будет продолжаться. Я был уверен, что все идет к тому, чтобы снова применить бомбу в ближайшем будущем. Я чувствовал себя не в своей тарелке и думал: «Как все глупо: я вижу людей, строящих мост, и говорю себе “они просто ничего не понимают”». Я действительно верил в тот момент, что бессмысленно пытаться что-либо предпринять, поскольку все равно вскоре все будет разрушено и уничтожено. Я смотрел чужим, отстраненным взглядом на здания вокруг и все думал: «Как глупо, что они должны что-то строить». Я был в состоянии депрессии.

«Я не должен быть хорошим только потому, что кто-то полагает, будто я собираюсь быть хорошим»

(После войны Фейнман работал с Гансом Бете[3] в Корнеллском университете. Он отказался от предложения работать в Принстонском институте перспективных исследований.)

Все полагали, что я буду воодушевлен предложением работать в Принстоне, но меня оно не воодушевило, и я взял на вооружение новый принцип, состоящий в том, что я не несу никакой ответственности за то, чего от меня ожидают другие. Я не должен быть хорошим потому, что от меня этого ждут. Во всяком случае, я мог успокоиться на сей счет и рассудил сам с собой, что никогда я не делал того, что казалось важным другим, и не намерен впредь этого делать. Но я всегда получал удовольствие, занимаясь физикой и математическими вычислениями, и поэтому, когда работал над теорией, за которую впоследствии получил Нобелевскую премию[4], обычно разделывался с работой так же быстро, как с блюдом быстрого приготовления.

Нобелевская премия – заслуженна ли она?

(Фейнман был удостоен Нобелевской премии за работы по квантовой электродинамике.)

Что я сделал существенного и что было сделано независимо другими физиками, Томонагой в Японии и Швингером, – это разгадка того, каким образом контролировать, анализировать и обсуждать исходные процессы квантовой теории электричества и магнетизма, основы которой были заложены в 1928 году; как интерпретировать их так, чтобы избежать бесконечностей, проводить вычисления разумным образом, получать результаты, которые приводили бы к точному согласию с каждым экспериментальным фактом, известным на сегодняшний день, – квантовая электродинамика должна описывать все доступные детали эксперимента без учета, естественно, ядерных сил, – это была работа, которую я сделал в 1947 году, в которой говорилось, как все это раскрутить. За эту работу я и получил Нобелевскую премию.

(Корреспондент BBC: Это была заслуженная Нобелевская премия?)

Как сказать (СМЕЕТСЯ)… Я не знаю ничего о Нобелевской премии, я не понимаю, что она значит и чего стоит, но если члены Шведской академии решают, что x, y или z достоин Нобелевской премии, так оно и будет. Мне нечего делать с Нобелевской премией… это головная боль… (СМЕЕТСЯ). Я не люблю награды. Они имеют значение для оценки сделанной мной работы и для людей, которые ее оценили. Я знаю, что многие физики используют мою работу – ничего другого мне и не нужно, – думаю, остальное не имеет значения. Я не считаю особенно важным тот факт, что в Шведской академии признали данную работу достаточно выдающейся для получения премии. Я уже получил свою премию. Моя премия – это удовольствие от познания сути вещей, кайф от сделанного открытия. Мне важно знать, что другие люди пользуются плодами моего труда. Вот что существенно, а награды – это так… чья-то выдумка. Я не доверяю наградам; награды, черт возьми, докучают, награды – это видимость, как эполеты, как красивая военная форма. Мой отец растолковывал мне это именно так. Я не могу на это повлиять, но награды мне мешают.

Когда я учился в средней школе, одной из первых моих наград было получение членства в обществе «Ариста», которое представляло группу детей, получавших хорошие отметки – ну, как? – и все хотели быть членами «Аристы», и, когда я вошел в эту группу, я узнал, что они делали на своих собраниях – они сидели и обсуждали, кто еще достоин войти в эту замечательную группу, – вы понимаете мою мысль? Так они и просиживали, стараясь решить, кому разрешить присоединиться к «Аристе». Такого рода вещи беспокоят меня психологически по разным причинам. Я не понимаю самого себя, с тех пор и поныне награды меня всегда беспокоят.

Когда я стал членом Национальной академии наук, я в конечном счете вынужден был отказаться от этой чести, поскольку это был другой пример организации, члены которой тратили почти все время на выяснение того, кто достаточно знаменит, чтобы позволить ему стать членом академии. Кроме того, они решали, должны ли мы, физики, поддерживать друг друга, когда у них есть кандидатура очень хорошего химика, которого они пытаются протащить на выборах, а у нас нет достаточных оснований по таким-то и таким-то причинам. Разве вызывают возражения химики? Просто все в целом прогнило – основной их целью было решать, кто мог бы получить награду. Вы улавливаете, о чем я говорю? Я не люблю наград.

Правила игры

(С 1950 по 1988 год Фейнман преподавал теоретическую физику в Калифорнийском технологическом институте.)

Один из способов понять некоторую идею, – что мы и делаем, пытаясь постичь природу, – это представить себе, что боги играют с вами в грандиозную игру, скажем, в шахматы, и вы не знаете правил игры. Но вам разрешается смотреть на доску, по крайней мере время от времени, может быть, в ее маленький уголок, и, исходя из этих наблюдений, вы пытаетесь вывести, каковы правила игры, по каким законам двигаются фигуры. Через некоторое время вы могли бы подметить, что, например, только один слон на доске движется по клеткам одного цвета. Немного погодя вы могли бы открыть закон, согласно которому слон передвигается по диагонали, и тем самым объяснить ранее открытый вами закон, что слон движется по клеткам того же цвета. Это аналогично открытию некоторого закона и последующего более глубокого его осмысления. Затем могут происходить разные события, все складывается благоприятно, вы нашли все законы, и общая картина выглядит весьма неплохо, и вдруг где-то в уголке происходит одно необычное явление, например рокировка, – словом, что-то, чего вы не ожидали. Между прочим, в фундаментальной физике мы пытаемся исследовать такие вещи, относительно которых не можем сделать заключений. Потом мы многократно проверяем их и говорим: все в порядке!

Именно то, что не вписывается в теорию, представляет наибольший интерес, то, что не согласуется с тем, чего вы ожидали. Кроме того, вы могли бы совершить революцию в физике: после того как вы открыли, что слоны поддерживают свой цвет и ходят по диагонали, – и так происходит достаточно долго, и всем известно, что это правда, – в один прекрасный день вы замечаете в одной шахматной игре, что слон не поддерживает свой цвет, он его меняет. Только позднее вы открываете новую возможность – слон захвачен, и пешка прошла через всю доску и стала новым слоном – такое может случиться, но вы об этом не знали. Это очень похоже на тот причудливый путь, с помощью которого открывают законы природы: иногда они выглядят точными, они продолжают работать, но вдруг какая-то хитроумная диковинка указывает, что они не верны; и тогда вам приходится исследовать условия, при которых слон поменял цвет и тому подобное, и наконец вы вывели новое правило, которое глубже объясняет закон. Хотя в отличие от игры в шахматы, в которой правила усложняются по мере вашего продвижения, в физике, где вы открываете новые явления, все выглядит много проще. Кажется, что в целом все более сложно, поскольку вы получаете большее количество опытных данных, – то есть вы узнаете о большем разнообразии частиц и новых явлений – и законы опять выглядят сложными. Но если вы будете постоянно представлять, насколько они удивительные, то есть если мы распространим наш опыт на все более неизведанные области, время от времени объединяя все в единое целое, когда все работает сообща в дружном союзе, мы поймем, что все проще, чем казалось раньше.

Если вас интересуют основные принципы устройства физического мира или завершенная картина мира, то в настоящий момент наш единственный путь познания связан с умозаключениями, основанными на математическом аппарате. Не думаю, что человек без знания математики сможет сегодня полностью или хотя бы частично оценить специфику особенностей мира, чрезвычайно глубокую универсальность законов, взаимосвязь явлений. Я не знаю никакого другого пути… мы не знаем другого способа точного описания мира… или способа увидеть его внутренние взаимосвязи без математики. Полагаю, что человек, не разработавший некоторой математической процедуры, не способен оценить эту сторону мира. Не поймите меня неправильно – существует множество сторон мира, где математика не нужна, например, любовь, оценка которой восхитительна и тонка, это чувство внушает трепет и благоговение. Я не имею в виду, что в жизни есть только одна вещь – физика, но мы беседуем о физике, и коль скоро мы говорим о ней, то незнание математики ведет к жестким ограничениям в понимании мира.

Сокрушительные атомы

Понимаете, то, над чем я работаю в физике именно сейчас, – это очень важная задача, в которой мы столкнулись с трудностями; попробую описать ее. Вы знаете, что все состоит из атомов, мы поняли это давно, и многие знают, что атом состоит из ядра и электронов, движущихся вокруг него. Поведение внешней части, электронов, теперь полностью известно, законы для них хорошо изучены, насколько их можно трактовать в рамках квантовой электродинамики, о ней я вам уже рассказывал. И после того как все это раскрутили, оставался вопрос, как работает ядро, как взаимодействуют в нем частицы, как они удерживаются вместе? Одним из побочных продуктов ядерной физики оказалось открытие деления ядра и создание атомной бомбы. Но исследование сил, которые удерживают ядерные частицы в ядре, – это давно существующая сложная задача. Во-первых, считается, что силы возникают благодаря внутреннему обмену частицами определенного сорта, такую модель придумал Юкава, а частицы назвали пионами. Предположим, вы ударяете протонами по ядру – протон является одной из частиц, входящих в состав ядра, – протоны будут выбивать пионы, и они будут, конечно, вырываться наружу, испускаться.

Испускаются не только пионы, но и другие частицы – и мы придумываем им имена, пока они не иссякнут, – каоны и сигма, лямбда и прочие. Все они теперь называются адронами, и, если увеличивать энергию реакции, вы получите все больше и больше частиц, до сотен различных частиц; проблема, в период от 1940–1950 годов и до наших дней, без сомнения, состояла в том, чтобы найти заложенную в их основе структуру. Казалось бы, среди этих частиц должно существовать множество интереснейших связей и структур, пока теория не нашла объяснения их строения, – все эти частицы состоят из чего-то еще – и это что-то мы назвали кварками. Например, три кварка образуют протон, а протон – одна из частиц ядра; другая частица ядра – нейтрон. Существуют несколько кварков – сначала фактически были нужны только три кварка, чтобы объяснить все разнообразие сотен частиц, эти три различных кварка назвали кварками u-типа, d-типа и s-типа. Протон состоит из двух u-кварков и одного d-кварка, а нейтрон – из двух d-кварков и одного u-кварка. Если бы кварки двигались внутри различными путями, они представляли бы некоторую другую частицу. Тогда возникает вопрос: каково точное поведение кварков и что удерживает их вместе? Теория предположительно очень проста, очень близка аналогия с квантовой электродинамикой – не полностью, но очень похожа – кварки подобны электрону, а частицы, названные глюонами, которые курсируют между кварками, заставляя их притягиваться друг к другу, подобны фотону, который тоже путешествует между электронами, создавая электромагнитные силы. И математика здесь очень похожа, но содержит несколько немного отличающихся членов. Разгаданное различие в форме уравнений привело к разгадке принципов такой красоты и простоты, что их никак нельзя считать случайными, они очень и очень определенные. Пока не выяснено, сколько существует различных видов кварков[5].

Тут есть кардинальное отличие от электродинамики, в которой два электрона могут расходиться сколь угодно далеко, а когда они далеки друг от друга, то силы между ними, в сущности, становятся совсем ничтожными. Если бы это было справедливо для кварков, то мы ожидали бы, что, когда достаточно сильно ударяешь по какой-либо ядерной частице (адрону), должны испускаться кварки. Однако вместо этого, когда проводятся эксперименты при энергии, достаточной для вылета кварков, вы обнаруживаете большую струю – иначе говоря, много частиц, идущих в том же направлении, что и первоначальные адроны, но в струе нет кварков – и это требование теории: когда вылетают кварки, они образуют что-то вроде новых пар кварков, они входят в состав маленьких групп кварков, представляющих адроны.

Вопрос, почему существуют такие отличия от электродинамики, как работает это малое различие в математических формулах, эти малые члены, которые незначительно изменяют уравнения, но приводят к таким различающимся эффектам, к полностью иным эффектам? То, что происходит в реальности, было действительно удивительным для большинства ученых, и первое, что приходит в голову, что теория неправильна. Но чем больше ею занимались, тем яснее становилось, что, по-видимому, виной всему оказываются именно эти дополнительные члены, приводящие к таким различающимся эффектам. Теперь мы полагаем, что физика претерпевает кардинальные изменения. Мы имеем теорию, полную и вполне определенную теорию всех этих адронов, и у нас есть огромное количество экспериментальных данных с кучей подробностей – почему же мы не можем немедленно проверить теорию, обнаружить, правильна она или нет? Потому что нам нужно вычислить следствия теории. Если теория верна, что должно произойти и как это произойдет? В данный момент трудность заключается в первом шаге. Математика, необходимая для разгадывания следствий теории, в настоящее время непреодолимо сложна. В настоящее время – да! И поэтому очевидно, какова моя задача. Моя задача – попытаться разработать способ доведения теории до числа, тщательно ее проверить, не просто качественно, а увидеть, может ли она привести к правильным результатам.

Я потратил несколько лет, пытаясь изобрести математические трюки, которые позволили бы мне решить уравнения, но я, в общем, ничего не добился, и тогда я решил, что для начала должен представить себе, как может выглядеть решение. Трудно объяснить это доходчиво, но перед тем как оценить идею количественно, я должен уяснить качественный принцип, как работает явление. Иначе говоря, люди не понимали даже, как работает идея в грубом приближении. Я работал в последнее время, в последние год-два, над осмыслением того, как приблизительно работает теория, пока не количественно, надеясь, что в будущем это приближенное понимание сможет перерасти в точный математический аппарат, способ или алгоритм для перехода от теории к частицам. Понимаете, мы находимся в забавном положении: не то чтобы мы ищем теорию, мы ее получили – очень хорошего кандидата на роль теории, – мы находимся на той ступени, когда нам необходимо сравнить теорию с экспериментом, увидеть, какие появятся следствия и проверить исходную теорию. Мы зациклились на следствиях; тем не менее моя цель, мое страстное желание – понять, смогу ли я разработать адекватный способ решения задачи, чтобы понять, каковы следствия этой теории (СМЕЕТСЯ

1 Перевод Т. Ломоносовой.
2 Другие наиболее волнующие случаи произошли, если не в моей жизни, то по крайней мере в моей издательской деятельности, когда был обнаружен длительное время неизвестный и никогда ранее не публиковавшийся дубликат трех лекций, которые Фейнман передал Вашингтонскому университету в начале 1960-х. Они стали книгой «The Meaning of It All» [«Значение всего сущего» (англ.).]. Однако здесь было больше радости от обнаружения вещей, чем радости от познания сути вещей. – Примеч. ред. иностр. издания.
3 Бете (1906 – ?) – лауреат Нобелевской премии по физике 1967 года за вклад в теорию ядерных реакций, в особенности за его открытия, связанные с образованием энергии в звездах. – Примеч. ред. иностр. издания.
4 В 1965 году Нобелевскую премию по физике разделили Р. Фейнман, Дж. Швингер и С. Томонага за фундаментальные работы по созданию квантовой электродинамики и общий вклад в физику элементарных частиц. – Примеч. ред. иностр. издания.
5 К настоящему моменту установлено и открыто экспериментально шесть кварков. – Примеч. пер.
Продолжить чтение