Читать онлайн Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник бесплатно

Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рекомендовано Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по психологическим и биологическим специальностям

Рецензент доктор медицинских наук Л. И. Афтанас Научный редактор доктор биологических наук В. П. Леутин

© Николаева Е. И., 2008

© ООО «ПЕР СЭ», 2008

© «Логос», 2008

Предисловие

Книга, которая находится у вас в руках, выходит за рамки традиционного учебника по психофизиологии. Ее название свидетельствует о том, что авторский взгляд на соотношение психических и физиологических процессов представляет собой тесное переплетение системного подхода, глубоко проработанного отечественными психофизиологами, с концепциями, предлагаемыми в рамках близкого психофизиологии направления – физиологической психологии. Именно поэтому в учебнике представлены темы, ранее не встречавшиеся в подобного типа изданиях, например психофизиология пола, паранатальная психофизиология, психофизиология аддиктивного поведения и психофизиология старения. Тем не менее введение этих разделов в учебник в настоящее время кажется весьма обоснованным, поскольку современный исследователь изучает не просто психические и физиологические процессы усредненного испытуемого, но рассматривает все эти процессы у мужчины или женщины, находящихся на определенном этапе своего индивидуального развития в соответствующем возрастном периоде.

Другой особенностью учебника является введение достаточного количества спорных теоретических представлений, предложение студенту разных точек зрения на один и тот же вопрос, часто без предоставления окончательного единственно правильного ответа. Это встреча не с устоявшимися окончательными истинами, но с живой психофизиологической наукой, и она, встреча, кажется мне знаковой для нашего времени, поскольку отражает тенденции современного общества стремиться к рассмотрению явлений во всей их многогранности.

И, наконец, бесспорным преимуществом учебника, которое заметно любому, взявшему книгу в руки, является обилие иллюстраций и легкий авторский стиль изложения. Большая часть наших весьма глубоких по содержанию учебников, обращенных к студенту, удручающе бедна наглядным материалом, что крайне затрудняет процесс усвоения, и слишком пересыщена терминологией.

Надеюсь, что всякий, кто откроет первую страницу учебника, не сможет не дочитать его до конца, как это случилось со мной.

Доктор медицинских наук заместитель директора по науке Государственного научно-исследовательского института физиологии СО РАМН
Рис.13 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Введение

Психофизиология (психологическая физиология) – наука о физиологических основах психической деятельности человека. Она изучает поведение и внутренний мир индивидуума через призму физиологических изменений.

Практическую психофизиологию каждый человек осваивает с детства, обучаясь сопоставлять собственные переживания и ощущения с теми физиологическими реакциями, которыми они сопровождаются. Точно так же мы пытаемся догадаться о движущих силах поступков других людей, наблюдая за изменением их физиологических реакций. Бытует мнение, что такие реакции в большей мере отражают состояние человека, чем его слова. Разговорный язык фиксирует многочисленные связи между эмоциями и поведением в таких выражениях, как «ноги стали ватными», «это его подкосило», «сердце в пятки ушло» и др.

В «Сказке о мертвой царевне и семи богатырях» А. С. Пушкина, созданной на основе народных сказаний, в большом количестве сохранены подобные ассоциации. Так, встреча царицы с царем передается следующим образом: «Восхищенья не снесла и к обедне умерла».

Исторические факты свидетельствуют о многочисленных попытках анализа психологического состояния человека по его физиологическим реакциям, что и составляло багаж практических знаний по психофизиологии во всех уголках мира. Например, Александр Македонский отбирал в свое войско солдат, резко поднося к лицу новобранца зажженный факел. Если лицо вспыхивало румянцем из-за покраснения кожи, претендент становился солдатом, если же лицо бледнело, то у него не было шансов стать воином.

Сейчас мы объясняем эти реакции дифференцированной активацией при стрессе двух отделов вегетативной нервной системы. Активация симпатической нервной системы, мобилизующей организм на борьбу, связана с приливом крови к мышцам, что фиксируется в покраснении лица. Возбуждение парасимпатической нервной системы, поведенчески реализующееся через замирание или расслабление, сопровождается приливом крови к внутренним органам, что проявляется в побледнении лица. Александр Македонский нуждался в победителях, агрессивно реагирующих в бою, поэтому тест его, физиологический в своей основе, позволял выявлять людей, готовых сражаться до победного конца.

Древние народы использовали знания практической психофизиологии для объективизации решений в трудных ситуациях, хотя многие из них не имели под собой реальной основы. Например, в средневековой Европе считалось, что женщина, весящая менее 49 кг вместе с помелом, непременно должна быть ведьмой (Этинген, 1988). На Руси полагали, что праведный человек, брошенный в воду, утонет, а лживый всплывет. В Китае подозреваемого в преступлении заставляли взять в рот пригоршню риса. Если он мог его выплюнуть, значит был невиновен, поскольку считалось, что у преступника пересыхает во рту и у него не наберется достаточного количества слюны. В действительности же пересыхает во рту не у виновного, а у человека, находящегося в стрессе. Эта вегетативная реакция опосредована адренергическими механизмами, уменьшающими слюноотделение.

Попытку применения психофизиологических знаний в практике Московского уголовного розыска в 30-х годах XX века предпринял А. Р. Лурия. Он использовал ассоциативный тест для выявления преступников среди подозреваемых.

Первые систематические наблюдения о связи изменения частоты пульса с эмоциями провел древнеримский врач Гален. Он описал резкое учащение пульса у женщины в тот момент, когда при ней произносили имя ее возлюбленного (Хэссет, 1981).

В настоящее время психофизиология имеет значительный инструментарий для исследования своего предмета – соотношения психических переживаний и мозговых изменений, их обусловливающих. Накоплено значительное количество данных, позволяющих объяснять и предсказывать те психологические изменения, которые должны сопровождать конкретные физиологические сдвиги. В то же время многое еще остается непознанным.

Распространение психофизиологических знаний за пределы узкого круга специалистов представляется крайне важным: оно позволяет заменить ошибочные представления «народной» психофизиологии на реальные знания, имеющиеся в арсенале науки. Эти знания создают необходимую основу для формирования осознанных представлений о здоровом образе жизни каждого человека.

В названии предлагаемого учебника фигурируют две науки: физиологическая психология и психологическая физиология. Термин физиологическая психология ввел В. Вундт в конце XIX века. Он использовал его для названия науки, задачей которой явилось изучение психологических возможностей животных в экспериментальных условиях, направленных на изменение состояния их мозга, а также физиологических основ психической деятельности человека. Термин психологическая физиология предложил А. Р. Лурия (1978) для выделения системного подхода в исследовании психических процессов, сформировавшегося в Советском Союзе. С точки зрения ученого, физиологическая психология акцентируется на отдельных физиологических процессах, лежащих в основе психических явлений, тогда как центральной задачей психофизиологии является анализ целостных форм психической деятельности. Эта наука опиралась на теорию функциональных систем П. К. Анохина (1968). В некоторых источниках психологическую физиологию связывают исключительно с исследованиями психики человека, тогда как физиологическую психологию – с результатами экспериментов на животных. Современные методы, позволяющие неинвазивное (без операционного вмешательства) проведение исследования, постепенно стирают границу в результатах, полученных на человеке и на животных. А потому, рассматривая физиологические процессы, происходящие у человека, мы будем привлекать материалы физиологической психологии, делая выводы более доказательными. Кроме того, современная физиологическая психология так же, как и психологическая физиология, изучает физиологические основы целостного поведения животных и человека.

Появление новых методов исследования стирает рамки не только между психофизиологией и физиологической психологией. Так, физиология высшей нервной деятельности (ВНД), созданная трудами И. П. Павлова и его учеников, также имеет своей задачей изучение физиологических основ психической деятельности. Термин ВНД введен И. П. Павловым для того, чтобы подчеркнуть отличие собственного подхода в исследовании психики, основанного на эксперименте, от интраспективных психологических методов исследования. Современная психофизиология владеет многочисленными объективными методами получения информации, поэтому нет необходимости выделять физиологию ВДН в отдельную дисциплину.

Другая наука – нейропсихология – сформировалась на стыке нескольких дисциплин (нейрохирургии, психологии, физиологии) и базировалась на анализе последствий локальных поражений головного мозга. Значительный вклад в разработку ее основных положений внес А. Р. Лурия, создавший теорию системной динамической локализации психических процессов. Появление томографии расширяет возможность неинвазивного анализа мозга человека в норме и при патологии, тем самым сближая задачи психофизиологии и нейропсихологии.

Наконец, в настоящее время появилась новая дисциплина – нейронаука, задачей которой является объединение не только данных и подходов перечисленных наук, но и биохимии мозга, нейроиммунологии для создания единой концепции взаимосвязи происходящих в мозге процессов с психической жизнью человека. От успехов этой дисциплины будет зависеть то, насколько долго сохранится отдельная дисциплина психофизиология.

Учебник включает в себя тематически традиционные для такого рода руководств разделы. Отличительной его особенностью является наличие глав, посвященных функциональной асимметрии мозга, паранатальной психофизиологии, психофизиологии пола и аддиктивному поведению. Необходимость введения данного материала обусловлена тем, что исследования в этих направлениях в последнее время достигли больших успехов, но не получили адекватного освещения за пределами узкой аудитории специалистов.

Выражаю благодарность за помощь в работе над рукописью научному редактору Виталию Петровичу Леутину и издателю Чернову Алексею Евгеньевичу, без энергии и поддержки которых эта книга вряд ли бы вышла в свет.

Е. И. Николаева

Словарь

Психофизиология —

наука о связи психических переживаний с физиологическими процессами, лежащими в основе этих переживаний, изучает поведение и внутренний мир человека через призму физиологических изменений.

Физиологическая психология —

наука, задачей которой является изучение психологических возможностей животных в экспериментальных условиях, направленных на изменение состояния их мозга. В настоящее время представляет собой науку о физиологических основах психической деятельности человека и животных.

Глава 1

Биологические основы психики

Рис.0 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Мозг и психические процессы

Все многообразие взглядов на взаимоотношения между мозгом и психическими процессами можно свести к трем подходам. Первый предполагает, что психические явления обусловлены исключительно активностью мозга, т. е. за всеми психическими изменениями стоят те или иные процессы, происходящие в мозговой ткани. Предполагается, что не все соотношения этих изменений можно измерить и продемонстрировать в настоящее время, но совершенствование технических возможностей науки приведет в дальнейшем к их обнаружению и пониманию.

Второй подход заключается в том, что только низшие психические процессы связаны с мозгом, тогда как духовная жизнь человека определяется высшим существом (например, Богом). И, наконец, третий подход вытекает из предположения, что мозг является лишь приемником некоторых процессов, которые возникают где-то во вселенной и транслируются через организм человека.

Психофизиология как наука о взаимоотношениях мозга и психики полностью опирается на первый подход. Она использует в своем арсенале теоретические позиции, которые построены на фактах, соответствующих требованиям науки в ее современном смысле слова. Это означает, что такие факты могут быть выявлены любым человеком, если он будет для их получения соблюдать соответствующие условия. Эти условия заключаются в том, что ученый работает в рамках определенной парадигмы – принятого на данный момент эталона проведения исследования. Парадигма включает теоретические представления, выведенные на основании предыдущих знаний, методологию, то есть правила проведения исследования, выработанные предыдущими учеными, и инструментарий – оборудование, которое позволяет в той или иной мере ответить на поставленные в исследовании вопросы. Психофизиология, как и любая другая наука, отвечает принципу верифицируемости, то есть любое ее положение должно быть доказано, и принципу фальсифицируемости, то есть любое ее положение может быть опровергнуто в процессе эмпирического исследования. И хотя современная психофизиология способна объяснить лишь те факты, которые связаны с функционированием отдельных нейронов или их цепей, исследователи уверены, что в дальнейшем накопление знаний позволит понять и причину таких явлений, как, скажем, любовь и ненависть (Delgado, 1998).

Проблема соотношения психического и физиологического называется психофизиологической. Она до сих пор не имеет решения. В данном учебнике описаны многочисленные факты взаимного влияния мозга и психики. Тем не менее причинно-следственная связь между ними не поддается описанию на современном уровне состояния науки.

Наиболее простое решение этой проблемы связано со сведением психического к физиологическому, то есть отрицанием специфичности психических процессов. Эту точку зрения, широко распространенную на ранних этапах развития науки, в настоящий момент разделяет узкий круг специалистов.

Другая группа исследователей описывает психические процессы как особые в нервной системе, существенно отличающиеся от остальных, но тем не менее являющиеся нервными.

И, наконец, есть точка зрения, что физиологические и психические процессы имеют различные закономерности, не сводятся друг к другу, хотя психическая активность обусловлена деятельностью мозга. Более подробно психофизиологическая проблема будет рассмотрена в главе 12 «Психофизиология осознанных процессов».

Значительный вклад в обоснование этой точки зрения внес австрийский анатом Франц Иосиф Галль. Он создал науку кефалоскопию, более известную в наше время как френология. Он полагал, что способности людей в той или иной области определяются объемом нервной ткани мозга, которая отвечает за эти способности. Большие скопления нервной ткани, с его точки зрения, деформируют находящуюся над ней черепную кость, вызывая развитие шишек на голове. И хотя сейчас эти представления могут вызывать лишь улыбку, в начале XIX века в магазинах можно было встретить муляжи головы с раскрашенными участками черепа, ответственными за те или иные способности (рис. 1.1).

Выдающийся ученый Чарльз Дарвин чуть было не поплатился своей будущей карьерой из-за пристрастия его современников к легким предсказаниям (по шишкам на голове, линиям на руке и т. д.). Капитан корабля «Бигль» (на котором Дарвин путешествовал, сделал важные открытия, а впоследствии на их основе создал теорию эволюции) увлекался предсказанием способностей людей по рисунку линий на стопе. Стопа ученого явно не внушала ему доверия, и теория эволюции могла бы не возникнуть, если бы капитан, подбирая состав команды для плавания, опирался исключительно на этот метод.

Тем не менее открытия, сделанные Ф. И. Галлем, столь значительны, что он известен в науке как серьезный исследователь. Он обнаружил разницу между строением белого и серого вещества мозга, описал передние и задние корешки спинного мозга и показал, что неразумно приписывать коре мозга функции секреторной железы, как делали до него многие выдающиеся ученые.

Согласно Л. М. Веккеру (2000), существуют основные критические признаки, по которым происходит первичное различение психического акта от физиологического. Они связаны с особенностями отношений между механизмом функционирования органа этого акта и самим актом как результатом этого функционирования. Л. М. Веккер выделяет такие эмпирические признаки, которые отличают психическое от собственно физиологического:

Рис.14 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.1. Френологическая карта с обозначением зон мозга, ответственных за различные психические функции.

Эмоции.

I. Склонности. 1. Деструктивность. 2. Привлекательность. 3. Чадолюбие. 4. Прилипчивость. 5. Постоянство. 6. Воинственность. 7. Скрытность. 8. Восприимчивость. 9. Конструктивность.

II. Чувства. 10. Осторожность. 11. Конформность. 12. Самооценка. 13. Доброжелательность. 14. Благоговение. 15. Непоколебимость. 16. Добросовестность. 17. Надежда. 18. Восхищенность. 19. Идеализирование. 20. Радость. 21. Подражание.

Интеллект

I. Восприятие. 22. Индивидуальность. 23. Форма. 24. Размер. 25. Вес и устойчивость. 26. Цвет. 27. Местоположение. 28. Порядок. 29. Счет. 30. Вероятность. 31. Время 32. Гармония. 33. Язык.

II. Рефлексивность. 34. Сравнение. 35. Причинность.

1. Предметность. Этот признак состоит в том, что итоговые характеристики любого психического процесса могут быть описаны только в терминах свойств и отношений внешних объектов, физическое существование которых с органом этого психического процесса совершенно не связано и которые составляют его содержание.

Так, восприятие, являющееся функцией органов чувств, нельзя описать иначе, чем в терминах формы, величины, твердости и т. д. воспринимаемого или представляемого объекта. Воспроизведение качеств одного объекта в другом, служащим его моделью, не заключает уникальности психических явлений, поскольку встречается в различных видах и непсихических отображений. Разные предметы – копия и оригинал – могут обладать одной и той же формой, величиной, цветом и т. д. Суть же рассматриваемого исходного критического признака психического процесса заключается в том, что, протекая в своем органе-носителе, этот внутренний процесс в его конечных, результативных параметрах скроен по образцам свойств внешнего объекта.

2. Субъектность. Вторая специфическая особенность психического заключается в том, что в картине психического процесса остаются скрытыми изменения состояния органа-носителя, которые данный процесс реализуют. Итоговые, конечные параметры не могут быть сформулированы на собственно физиологическом языке тех явлений и величин, которые обнаруживаются в мозге. Эта неформулируемость характеристик психических процессов на физиологическом языке внутренних изменений является оборотной стороной их формулируемости лишь на языке свойств и отношений их объекта.

3. Чувственная недоступность. Характеризуется тем, что психические процессы недоступны прямому чувственному наблюдению. Своему носителю-субъекту психический процесс (восприятие или мысль) открывает свойства объекта, оставляя скрытыми изменения в мозге, составляющие механизм этого процесса. Но, с другой стороны, изменения в мозге, открытые с той или иной степенью полноты для стороннего наблюдателя, не раскрывают перед ним характеристик психического процесса другого человека. Человек не воспринимает своих восприятий, но ему непосредственно открывается предметная картина их объектов. Внешнему же наблюдению не открывается ни предметная картина восприятий и мыслей другого человека, ни их собственно психическая «ткань». Непосредственному наблюдению со стороны доступны именно и только процессы в органе, составляющие механизм психического акта.

4. Спонтанная активность. Эта характеристика психического процесса, в отличие от предшествующих, определяет не прямое отношение к объекту или к его непосредственному субстрату – мозгу, а выражение его в поведенческом акте, во внешнем действии, побуждении, которые направляются психическим процессом.

Известно, что вес мозга человека варьирует от 1,5 до 1,8 кг; таким образом, даже в норме разница в весе мозга составляет около 300 г. Еще больший диапазон в весе мозга обнаружен у выдающихся деятелей мировой культуры. Например, вес мозга французского писателя А. Франса составлял около 900 г, тогда как у И. С. Тургенева он был 2 кг 400 г. По некоторым данным, у известного французского естествоиспытателя Л. Пастера было только одно (левое) полушарие мозга, на месте второго имелись лишь зародышевые пузыри (Этинген, 1988). Это свидетельствует о том, что не только вес мозга предопределяет качество психической активности человека.

Среднее количество нейронов – специализированных клеток мозга – составляет 100 млрд, что сопоставимо с числом звезд в системе Млечного Пути. Однако уже подчеркивалось, что сложность строения головного мозга и его функций нельзя объяснить только числом клеток. Все больше подтверждений получает гипотеза, объясняющая взаимосвязь интеллекта не с количеством нейронов, а с числом и особенностью связей между ними. Для понимания этого процесса необходимо ознакомиться со структурой нервной системы и условиями ее работы.

Начиная с трудов Л. С. Выготского (1982–1984), деятельность мозга описывается как система совместно функционирующих высокодифференцированных областей мозга, формирующих новые типы межцентральных отношений. А. Р. Лурия (1973) представил работу мозга в виде трех структурно-функциональных образований – блоков. Их совместное участие необходимо в любой деятельности. Первый блок обеспечивает регуляцию тонуса и бодрствования, второй – ответственен за получение, переработку и хранение информации, третий блок связан с программированием и контролем психической деятельности. К первому блоку он относил мозговые структуры, расположенные по средней линии, включающие неспецифические образования разных уровней. Во второй блок включены корковые и подкорковые структуры задних отделов полушарий мозга, в третий – корковые и подкорковые отделы премоторных и префронтальных областей.

Краткое описание строения нервной системы

В зависимости от поставленных задач научное структурирование нервной системы может происходить различным образом. Каждая из классификаций представляет собой попытку упрощения ее строения для детального изучения. Широко распространена классификация по пространственному признаку, которая позволяет выделять центральную и периферическую нервные системы.

Центральная нервная система (ЦНС) включает структуры, расположенные внутри черепа и позвоночника, – головной и спинной мозг. Все, что находится вне этих костных структур, относится к периферической нервной системе (рис. 1.2).

Рис.15 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.2. Центральная и периферическая нервные системы.

Головной мозг состоит из переднего, среднего и заднего (рис. 1.3; табл. 1.1). Передний мозг включает полушария мозга, покрытые корой, миндалину, гиппокамп, базальные ганглии, таламус и гипоталамус. Таламические поля и ядра обеспечивают переключение почти всей сенсорной и моторной информации, входящей и выходящей из переднего мозга. Гипоталамические поля и ядра служат релейными (передаточными) станциями для внутренних регуляторных систем. Средний мозг состоит из крыши среднего мозга, покрышки, четверохолмия, черного вещества. Задний мозг включает варолиев мост, продолговатый мозг, мозжечок. Поля и ядра моста и ствола отвечают за жизненно важную деятельность организма, контролируя дыхание и сердечный ритм. Мозжечок получает и анализирует информацию о положении тела в пространстве.

Таблица 1.1.

Основные разделы головного мозга

Рис.16 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник
Рис.17 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.3. Схематическое расположение подкорковых ядер и структур (Спрингер, Дейч, 1983).

Спинной мозг, который можно рассматривать как продолжение заднего мозга, является центральным коммутатором (переключателем), передающим сообщения из ЦНС на периферию и обратно (рис. 1.4).

Рис.18 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.4. Строение спинного мозга. Дорсальные корешки несут сенсорную информацию в мозг, вентральные корешки – эфферентные команды к мышцам (Kalat, 1992).

Периферическая нервная система состоит из соматической и вегетативной (автономной). Соматическая нервная система обеспечивает контроль сокращений поперечно-полосатых мышц, т. е. всей скелетной мускулатуры. Ее нейроны находятся в передних рогах спинного мозга, а их аксоны через передние корешки спинного мозга направляются к скелетным (поперечно-полосатым) мышцам. Там, в области двигательной пластинки мышечного волокна, аксон образует синапс. Соматическая нервная система представлена однонейронным путем (рис. 1.5).

Рис.19 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.5. Строение мотонейрона.

Вегетативная нервная система иннервирует гладкую мускулатуру и управляет деятельностью внутренних органов, поэтому ее еще называют висцеральной. Деление периферической нервной системы на соматическую и вегетативную достаточно условно, поскольку в ЦНС существует значительное перекрытие проекций той и другой, и соматические и вегетативные реакции являются равноправными компонентами любой поведенческой реакции.

Вегетативная нервная система состоит из двух анатомически обособленных систем, являющихся функциональными антагонистами – симпатической и парасимпатической (рис. 1.6). В отличие от соматической нервной системы, имеющей однонейронный путь, пути в вегетативной нервной системе являются двухнейронными. Волокна симпатической нервной системы выходят из грудного и поясничного отделов спинного мозга, где лежит первый симпатический нейрон. Затем они сходятся к симпатическим ганглиям, расположенным вдоль позвоночника, где находится второй симпатический нейрон (рис. 1.6).

Волокна парасимпатической нервной системы начинаются в спинном мозге выше или ниже места выхода симпатических нервов (пара – около, лат.) из черепного и крестцового отдела, а затем сходятся в ганглиях, расположенных не вдоль позвоночного столба, а вблизи от иннервируемого органа (рис. 1.6).

Рис.20 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.6. Автономная нервная система и органы, иннервируемые ею (Carlson, 1992).

Особенности расположения ганглиев этих двух систем предполагают различие оказываемого ими эффекта. Действие симпатической нервной системы более диффузно, а парасимпатической – более специфично, поскольку связано только с изменениями в органе, рядом с которым находится ганглий. Эти системы различаются и медиаторами, участвующими в синаптической передаче. Основным медиатором для симпатической нервной системы является адреналин, а для парасимпатической – ацетилхолин.

Результаты активности этих двух систем во многом противоположны. Если основная функция симпатической нервной системы состоит в мобилизации организма на борьбу или бегство, то парасимпатическая нервная система преимущественно обеспечивает поддержание гомеостаза. Активация симпатической нервной системы лежит в основе поведения человека, рвущегося в бой. Возбуждение парасимпатической нервной системы обеспечивает пищеварение у человека, лежащего на диване после сытного обеда (вспомните тест Александра Македонского с горящим факелом, описанный во введении).

Симпатическая нервная система возбуждает, а парасимпатическая – тормозит деятельность сердца, первая ослабляет двигательную активность кишечника, вторая ее усиливает. В то же время они могут действовать и заодно: вместе увеличивают двигательную активность слюнных и желудочных желез, хотя состав секретируемого сока в зависимости от доли участия каждой системы меняется. В табл. 1.2 представлены эти различия в результатах деятельности симпатической и парасимпатической нервных систем.

Симпатическая и парасимпатическая системы возникли в эволюции не одновременно. Известно, что у миксин и миног (ранних представителей позвоночных) парасимпатическая система развита достаточно хорошо, но у них отсутствуют даже зачатки симпатической нервной системы. Полного своего развития симпатическая нервная система достигает только у амфибий (Родионов, 1996).

Таблица 1.2.

Особенности симпатической и парасимпатической нервной системы (Бабский и др., 1979).

Рис.21 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Первичность парасимпатической нервной системы по отношению к симпатической обнаруживается еще и в том, что при экспериментальном удалении парасимпатической иннервации все ее функции практически перестают выявляться, тогда как при устранении симпатических влияний ни одна из функций не выпадает полностью, поскольку возникает компенсация за счет корковых воздействий на них.

В начале двадцатого века Уолтер Кеннон проводил обширные исследования симпатического отдела вегетативной нервной системы. С тех пор считается, что симпатическая нервная система расширяет диапазон выносливости организма при экстремальных воздействиях, а функционирование организма на базовом уровне обеспечивается парасимпатической нервной системой.

Итак, особенностями функционирования вегетативной нервной системы являются реципрокное взаимодействие ее компонентов (парасимпатического и симпатического), параллельное существование нескольких путей обеспечения функций (отсутствие единого центра), зависимость характера ее реакции от исходного состояния человека, нейрохимическая гетерогенность.

Центральными структурами, включенными в регуляцию активности периферических звеньев вегетативной нервной системы, являются ряд областей переднего, промежуточного мозга и мозгового ствола, которые контролируют преганглионарные симпатические и парасимпатические волокна. К важнейшим ее компонентам относятся инсуларная и медиальная префронтальная кора, центральные ядра миндалины и задние ядра конечной полоски, гипоталамус, околоводопроводное серое вещество мозгового ствола, парабрахиальный регион моста, ядра одиночного тракта, промежуточная ретикулрная медуллярная зона и вентролатеральная медула (Чуприков, Палиенко, 2004).

Клетки мозга

Особенностью живого организма является использование короткоживущих материалов для построения долгоживущих систем. Решение этой на первый взгляд неразрешимой задачи найдено в постоянном обновлении организма. Каждая клетка, каждый орган в нем находятся в состоянии хронического «ремонта», во время которого старые молекулы заменяются новыми. В результате этого структура в целом (например, клетка) живет многие годы, тогда как молекулы вновь и вновь сменяются новыми. Особенно интенсивны эти процессы в мозге, который обновляется на 80 % всего лишь за две недели.

Ведущее значение в деятельности любой клетки принадлежит мембране. В особой мере это относится к нервной системе. В организме человека ее функциями являются интеграция и коммуникация. Эти функции осуществляются через мембрану: прохождение нервного импульса вдоль аксона, приводящее к возникновению потенциала действия за счет переноса ионов через аксональную мембрану; передача информации от одной клетки к другой представляет собой химические и электрические явления на синаптической мембране; гормональная регуляция связана с восприятием управляющих сигналов – гормонов – через синаптические рецепторы на мембране (Хухо, 1990). Толщина ее составляет в среднем 8 нанометров (нм), что меньше чем 0,00001 мм. В 1934 г. исследователи Дж. Даниэли и Й. Даусон предложили модель, согласно которой клеточная мембрана выглядела как сэндвич (разрезанная булка с маслом внутри). Наружные слои модели составляли белки, а внутри «сэндвича» помещались фосфолипиды (сложные жироподобные молекулы) (Климов, Никульчева, 1995).

Современное представление о структуре мембраны введено С. Зингером и Г. Николсоном, предложившими жидкомозаичную модель мембраны (Singer, Nicolson, 1972). Согласно их гипотезе белки мембраны погружены в гель из двойного слоя фосфолипидов. Эти молекулы имеют два конца, из которых один растворим в воде, а другой нет. Фосфолипиды двух слоев повернуты друг к другу своими нерастворимыми в воде концами (рис. 1.7). Молекулы фосфолипидов, находясь в жидком кристаллическом состоянии, подвижны и могут проникать из слоя в слой (так называемая «флип-флоп диффузия»; flip – щелчок, flop – шлепок, англ.) или меняться местами с соседями (латеральная диффузия). У бактерий одна молекула фосфолипидов завершает полный цикл движения вокруг клетки примерно за 1 сек. – нетрудно представить себе подвижность живой клетки и ее частей (Климов, Никульчева, 1995). Жидкомозаичная модель клеточной мембраны – не более чем модель. Это значит, что она является рабочей гипотезой, в настоящее время наиболее адекватно описывающей мембрану. Любой хорошо запланированный эксперимент может ее изменить или даже отвергнуть (Хухо, 1990). В этом учебнике достаточно часто будет встречаться описание моделей, поэтому следует всегда помнить об относительной надежности этих описаний.

Рис.22 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.7. Строение мембраны нейрона (Kalat, 1992).

В каждой клетке тела, кроме клеток крови и генеративных клеток, набор генов одинаков. Однако все разнообразие функционирования клеток определяется набором экспрессирующихся генов (находящихся в активном состоянии, при котором синтезируется продукт, кодируемый данным геном). В каждой клетке эти работающие гены составляют лишь небольшую часть генома. В мозге избирательная генная экспрессия обнаружена в амакриновых клетках в сетчатке, клетках Пуркинье в мозжечке, мотонейронах в спинном мозге.

В процессах метаболизма универсальным источником питания мозговой ткани служит глюкоза. Независимо от того, поступила ли она из кишечника или образовалась в печени, глюкоза с током крови попадает во все ткани организма и используется ими для формирования богатых энергией связей, а также как первичный предшественник углеводов. В клетку глюкозу переносит белок, погруженный в клеточную мембрану. Пять форм такого белка уже достаточно хорошо изучены.

Нейроны

Известны два типа клеток мозга: нейроны и глия. Клеточная теория мозга была сформулирована в 1891 году. Она сменила ретикулярную теорию, согласно которой нервная система представлялась синцитием – гигантской плазматической сетью, не разделенной на отдельные ячейки. Сантьяго Рамон-и-Кахаль, экспериментально подтвердивший клеточную структуру мозга, назвал нейроны «загадочными бабочками души, чьих крыл биение в один прекрасный день – как знать? – прольет свет на тайны психической жизни» (Фишбах, 1992) (рис. 1.8). Человек рождается с окончательным количеством нейронов, не способных к дальнейшему делению при обычных условиях.

С. Рамон-и-Кахаль изучал нейроны, используя метод их фиксации, предложенный Камилло Гольджи. Утверждают, что итальянский врач К. Гольджи открыл этот метод у себя на кухне при свете свечи. Это был метод фиксации клетки двухромовокислым калием и импрегнации серебром (Шеперд, 1987). До К. Гольджи зафиксировать нейроны смог Зигмунд Фрейд. С 1876 по 1881 годы он работал с Эрнстом Брюкке – директором института физиологии при Венском университете, физиологом школы Германа Л. Ф. Гельмгольца. Фрейд предложил метод фиксации нейронов с помощью хлористого золота. Он оказался более дорогостоящим и поэтому менее привлекательным для исследователей.

Рис.1 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.8. Фотография нейрона, выполненная Ленарт Нилсон (Kalat, 1992).

Преимущество метода Гольджи заключалось в том, что серебро, полностью пропитывая нейроны, не проникает в окружающие их глиальные клетки (рис. 1.9). Воспользовавшись этим методом, С. Рамон-и-Кахаль смог увидеть отдельные нейроны и высказал предположение, что мозг образован дискретными единицами. Он впервые описал нейроны как поляризованные клетки, которые с помощью сильно разветвленных многочисленных отростков – дендритов (dendros – дерево, греч.) – получают сигналы и через единственный неразветвленный длинный отросток – аксон (axon – ось, греч.) – посылают информацию другим клеткам (рис. 1.10). Аксон может ветвиться, и его ветви называются коллатералями. В настоящее время доказано, что у нейрона может быть более одного аксона.

Рис.2 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.9. Нейроны. Препарат, представленный на рисунке, получен Дж. Роббинс из лаборатории Д. Хьюбела в Медицинской школе Гарвардского университета (Фишбах, 1992)

C. Рамон-и-Кахаль обнаружил фундаментальное различие между клетками с короткими аксонами, взаимодействующими с соседними клетками, и клетками с длинными аксонами, проецирующимися (посылающими сигналы) в другие участки мозга, и продемонстрировал разнообразие нервных клеток (рис. 1.11).

В 1906 г. С. Рамон-и-Кахалю и К. Гольджи была присуждена Нобелевская премия за открытия, сделанные в исследовании структуры мозга. Парадоксально, что С. Рамон-и-Кахаль получил премию за создание клеточной теории мозга, тогда как К. Гольджи, не разделявший эту точку зрения, даже в Нобелевской речи подчеркнул свою уверенность в том, что глия не является клеточной структурой.

Рис.23 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.10. Коммуникация нейронов (Фишбах, 1992).

Нейроны имеют самую разнообразную форму и размер, колеблющийся от 1 до 1000 мкм (т. е. они могут различаться по величине в 1000 раз).

Помимо структурных и молекулярных особенностей, еще более тонкие различия выявляются между нейронами при изучении входов последних (всех поступающих сигналов и аппарата их приема) и проекций (всех посылаемых сигналов и аппарата их передачи), которые зависят от функциональной активности клеток. Места соединений нейронов друг с другом называются синапсами.

Дегенерация и гибель некоторых клеток, волокон и синаптических терминалей – естественная часть процесса развития. В 1949 г. В. Хамбургер и Р. Леви-Монтальчини обнаружили, что в течение определенного короткого периода в самом начале эмбрионального развития дегенерирует большое число клеток в спинальных ганглиях и моторных областях спинного мозга. Ученые показали, что это происходит примерно в тот момент, когда волокна, берущие начало в этих структурах, устанавливают свои связи на периферии. Но особое внимание эти данные привлекли к себе только через 10 лет, когда было показано, что в некоторых случаях численность гибнущих нейронов достигает 75 %. Отмечается совпадение момента гибели с временем иннервации клетками той или иной области мозга своих органов-мишеней (мишень – место воздействия). Было сделано предположение, что при иннервации между аксонами возникает конкурентная борьба за мишени, и те клетки, которые проигрывают в этом процессе, гибнут (Фишбах, 1992).

Рис.24 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.11. Разнообразные формы нейронов (Фишбах, 1992).

В. Маунткасл, изучая соматосенсорную кору, и Д. Хьюбел и Т. Визел, занимавшиеся зрительной корой, обнаружили, что нейроны с одинаковыми функциями сгруппированы в виде колонок, пронизывающих толщу коры головного мозга. В зрительной коре такой модуль, клетки которого реагируют на линии определенной ориентации, имеет в поперечнике около 0,1 мм. Модуль может включать более 100 тыс. клеток, преобладающее большинство которых образует локальные нейронные сети, выполняющие ту или иную функцию (Фишбах, 1992).

Многие нейроны имеют цвет. Яркость его зависит от функции нейрона. Наиболее интенсивный цвет отмечается на уровне аксонального холмика (место отхода аксона от тела нейрона).

Глия

Нейроны составляют лишь 25 % от всех клеток мозга, остальные 75 % клеток относятся к нейроглии (glia – клей, греч.). Это название было дано в 1846 г. Р. Вирховым, полагавшим, что глия – это цементирующая основа для объединения нервных клеток. В среднем глиальные клетки составляют по величине примерно 1/10 размера нейрона. В отличие от нейронов они способны делиться. Именно благодаря им происходит увеличение объема мозга ребенка, составляющего при рождении примерно четверть мозга взрослого. Возникновение опухолей в мозге также связано не с активностью нейронов, а с бесконтрольным делением глиальных клеток.

Глиальные клетки имеют множество функций, но они не передают информацию, как это делают нейроны (рис. 1.12). Мембранный потенциал глиальных клеток выше, чем у нейронов, и определяется разностью концентраций ионов калия во внутри- и внеклеточном пространстве. Это отличает их от нейронов, мембранный потенциал которых формируется как разностью концентраций ионов калия, так и ионов натрия. При возбуждении нейрона из него одновременно выходят ионы К+ и Na+, что ведет к изменению мембранного потенциала расположенных рядом глиальных клеток. Последние частично поглощают ионы калия, функционируя как калиевый буфер, поддерживающий постоянную внеклеточную концентрацию этих ионов. Повышение внеклеточной концентрации калия могло бы снизить порог возбуждения нейрона, что вело бы к его спонтанной активации. Возможно, что именно этот механизм включается при возникновении эпилептических припадков (Хухо, 1990). Выделяют следующие функции глии.

1. Два типа глиальных клеток образуют миелиновую оболочку для аксонов: олигодендроциты формируют ее в головном и спинном мозге, а Шванновские клетки – в периферической нервной системе. Они обертываются вокруг аксона, изолируя его и ускоряя проведение импульса. Отростки одной глиальной клетки обертываются вокруг разных аксонов, что может способствовать интеграции работы сразу нескольких нейронов.

Рис.25 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.12. Формы некоторых глиальных клеток.

2. Астроглия и микроглия очищают мозг от погибших нейронов и от ненужного материала, поглощая его.

3. Астроглия также имеет опорную функцию, заполняя промежутки между нейронами и формируя тем самым внутренний скелет.

4. Радиальная глия помогает миграции нейронов и направляет аксоны в сторону расположения их мишеней в период эмбрионального развития. Аналогичным образом Шванновские клетки при повреждениях направляют восстанавливающийся аксон к месту иннервации. Они участвуют и в самом востановлении поврежденных нервов. Было показано, что после повреждения аксона Шванновская клетка может заменять утраченное нервное окончание в мышце и даже выделять медиатор (Хухо, 1990). В зрелом мозге радиальная глия перерождается в другие виды глии, осуществляя опорную функцию.

Рис.26 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.13. Гематоэнцефалический барьер

5. Астроглия формирует уникальный защитный слой между нейроном и кровеносным сосудом, так что все вещества из крови могут попасть в нейрон только через глиальную клетку. Этот барьер называется гематоэнцефалическим (haima – кровь, enkephalos – мозг, греч.). Гематоэнцефалический барьер могут преодолевать только маленькие молекулы, например ионы, глюкоза, незаменимые аминокислоты и жирные кислоты (рис. 1.13). Благодаря этому большие молекулы, токсины, вирусы и микробы не могут проникнуть в нейрон, что приводит к значительному повышению толерантности (устойчивости) мозга к вирусным инфекциям.

Существует только одна область мозга, где происходит нарушение гематоэнцефалического барьера, – гипоталамус. В нем находятся клетки, секретирующие либерины и статины, управляющие выделением гормонов из гипофиза. Сосуды непосредственно подходят к секретирующим нейронам, выделяющим свои биологически активные вещества прямо в кровь. Ввиду функциональной необходимости гематоэнцефалический барьер в этом месте нарушается. Гипоталамус можно назвать «ахиллесовой пятой» мозга, поскольку только здесь возможно проникновение инфекций в нервную систему человека.

Наличие гематоэнцефалического барьера при инфекционных поражениях мозговой ткани может препятствовать ее лечению путем введения антибиотиков в кровь. Молекулы лекарства не могут попасть в мозг в нужном количестве и не имеют возможности подойти непосредственно к очагу инфекции. Единственным выходом из этой ситуации остается пункция: лекарство вводится в позвоночный канал, связанный с желудочками мозга, через которые и попадает к очагу инфекции.

Передача информации в ЦНС

Информация в мозге передается по аксонам в виде коротких электрических импульсов, называемых потенциалами действия (ПД). Их амплитуда составляет около 100 мВ, длительность – 1 мс. ПД возникают в результате движения положительно заряженных ионов натрия через клеточную мембрану из внеклеточной жидкости внутрь клетки по специальным натрий-калиевым каналам. Концентрация натрия в межклеточном пространстве в 10 раз больше внутриклеточной.

Существует пассивный и активный транспорт ионов в нейрон. Пассивный (то есть не связанный с расходом энергии) происходит через раздельные Na+ и К+ каналы в мембране аксона. Активный транспорт связан с деятельностью Na+, К+ – насоса, который перекачивает ионы из менее концентрированного раствора в более концентрированный за счет энергии, высвобождаемой при гидролизе АТФ.

В состоянии покоя поддерживается трансмембранная разность потенциалов около 70 мВ (цитоплазма заряжена отрицательно относительно внешней среды). Мембрана практически непроницаема для Na+, тогда как К+ проходит сквозь нее и формирует потенциал покоя. Положительные заряды компенсируются неспособными выйти за пределы клетки анионами. Они и создают суммарный отрицательный заряд. Этот процесс продолжается до тех пор, пока формирующийся внутри клетки отрицательный заряд не будет сдерживать выходящие из нее ионы К+. Устанавливается состояние, при котором число входящих и выходящих ионов К+ уравновешивается.

Несмотря на то, что натрий-калиевый насос выбрасывает ионы натрия из клетки, они очень медленно проникают в клетку. Физическая или химическая стимуляция, деполяризующая мембрану, т. е. снижающая разность потенциалов, увеличивает ее проницаемость для ионов натрия. Поток ионов натрия внутрь клетки еще сильнее деполяризует мембрану (рис. 1.14). Если нейрон возбуждается достаточно интенсивно, то натрий-калиевый насос не успевает предоставить нужное количество натрия для деполяризации, и в этом нейрону помогает глиальная клетка (рис. 1.12).

Рис.27 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.14. На высоте активности нейрона, когда потребности в ионах натрия больше, чем это обеспечивает натрий-калиевый насос, астроцит действует как насос, перекачивая натрий из ближайшего сосуда (Kalat,1992).

Когда достигается некоторое критическое значение потенциала, называемое пороговым, на уровне аксонального холмика нейрона возникает ПД – распространяющийся по аксону потенциал. При этом положительная обратная связь на уровне мембраны нейрона приводит к регенеративным сдвигам, в результате которых знак разности потенциалов изменяется на противоположный, т. е. внутреннее содержимое клетки становится заряженным положительно по отношению к внешней среде. Приблизительно через 1 мс проницаемость мембраны для натрия падает, натрий-калиевый насос выбрасывает натрий из клетки, и трансмембранный потенциал возвращается к своему значению в состоянии покоя – 70 мВ.

После каждого такого разряда нейрон становится на некоторое время рефрактерным (неспособным к активации), т. е. натриевая проницаемость мембраны в этот период не может изменяться. Это кладет предел частоте генерации ПД – не более 200 раз в секунду. Максимальная скорость распространения нервного импульса составляет приблизительно 100 м/сек. Это более чем в миллион раз меньше скорости, с которой электрический сигнал движется по медной проволоке. Таким образом, скорость распространения ПД сравнительно низка.

Синаптическая передача информации

Уже отмечалась важная роль мембраны в передаче информации в мозге. Мембрана представляет собой барьер для прохождения нервного импульса. Именно поэтому связи между нейронами опосредуются химическими передатчиками – нейромедиаторами (mediator – посредник, англ.), выделяющимися из окончаний аксонов в области специализированных межклеточных контактов – синапсов. Синапс представляет собой мембраны двух соседних нейронов (передающего информацию и получающего ее) и пространство между ними, которое называется синаптической щелью. Синаптическая щель – это пространство шириною около 20 нм между мембранами пресинаптической (мембрана нейрона, находящегося перед синаптической щелью) и постсинаптической (мембрана клетки, находящейся после синаптической щели) клеток (рис. 1.15).

Различают аксо-соматические синапсы, сформированные мембранами аксона и тела (сомы) нейрона, аксо-дендритные, состоящие из мембраны аксона и дендрита, и аксо-аксональные, при которых аксон подходит к другому аксону. Синапс между аксоном и мышечным волокном называется нейромышечной кольцевой пластинкой.

Молекулы медиатора находятся в везикулах – особых пузырьках, расположенных в аксональной терминали (окончании аксона). ПД, достигая аксональной терминали, становится сигналом открытия кальциевых каналов, которые вызывают синхронный эндоцитоз – координированное выделение медиатора из везикул и поступление их в синаптическую щель. Медиатор связывается с рецептором, находящимся на постсинаптической мембране, который инициирует в постсинаптической клетке те или иные изменения в зависимости от вида рецептора. Медиатор, взаимодействуя с рецептором, может способствовать открытию ионных каналов (натрий-калиевых или кальциевых) или через аденилатциклазный механизм активировать внутриклеточного посредника – цАМФ (циклический аденозинмонофосфат) и цГМФ (циклический гуанозинмонофосфат). При открытии натрий-калиевого канала натрий поступает внутрь клетки, что приводит к деполяризации участка мембраны постсинаптического нейрона. Каждый синапс делает лишь незначительный вклад в этот процесс. Однако каждый нейрон непрерывно интегрирует до 1000 синаптических входов, которые суммируются нелинейно (рис. 1.16) и при достижении порогового потенциала вызывают ПД, т. е. распространяющийся вдоль аксона потенциал.

Рис.28 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.15. Структура синапса (а); фотография синапса, увеличенного под электронным микроскопом в тысячи раз (выполненная D. D. Kinkel) (б); фотография аксональных терминалей на теле аксона (в) (Kalat, 1992).

Рис.29 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 1.16. Временная и пространственная суммация импульсов (Kalat, 1992).

Синаптическая задержка – время между началом пресинаптической деполяризации и постсинаптической реакцией – составляет 0,5 мс. Всего лишь 1/10 часть этого времени обусловлена диффузией (проникновением) медиатора через синаптическую щель к постсинаптической мембране. Большая же часть времени тратится на открывание Са2+-каналов, через которые кальций проникает в аксонную терминаль и способствует высвобождению медиатора из везикул. Кальций в аксонной терминали имеется в крайне малых количествах. После того как он окажет свое действие, он удаляется, либо связываясь со специальным белком – кальмодулином, либо проникая в эндоплазматический ретикулум. Освобожденный медиатор может действовать как на ауторецепторы (расположенные на пресинаптической мембране), так и на постсинаптические рецепторы.

Согласно принципу английского ученого Г. Дейла, постулирующего метаболическое единство нейрона, во всех окончаниях нейрона выделяется один и тот же медиатор. В настоящее время доказано, что этот принцип касается только пресинаптического единства нейрона. Эффекты, которые вызываются данным медиатором, могут быть различны и зависят от клеток-мишеней (в данном случае постсинаптических нейронов). Знак синаптического действия – повышение постсинаптического потенциала или его падение – определяется не медиатором, а свойствами рецепторов на постсинаптической клетке.

Постсинаптические рецепторы одного пресинаптического нейрона могут фармакологически различаться и контролировать разные ионные каналы. Одна постсинаптическая клетка может иметь более одного типа рецепторов для данного медиатора, и каждый из этих рецепторов контролирует отличный от других механизм ионной проводимости.

Кроме нейронов, суммирующих и передающих информацию к другим клеткам, описаны так называемые пейсмекерные нейроны, способные самостоятельно генерировать электрические импульсы (Alving, 1968). Активность таких нейронов характеризуется синусоидальными колебаниями частотой 0,1–10 Гц и амплитудой 5–10 мВ. Эти нейроны при отсутствии любого внешнего воздействия обеспечивают периодическую генерацию ПД и передачу возбуждения другим нейронам.

Медиаторы

В начале XX века группа английских физиологов, возглавляемая Дж. Лэнгли, показала, что электрическая стимуляция вегетативных нервов вызывает изменения в органах, иннервируемых этими нервами. Оказалось также, что такие изменения можно вызвать инъекцией в организм экстрактов надпочечников. Дж. Лэнгли предположил, что клетки, иннервируемые вегетативными нервами, имеют две рецептивные субстанции – тормозную и возбуждающую.

На основании этих данных Т. Эллиот в 1905 г. выдвинул предположение, что возбуждающие импульсы в вегетативных нервах вызывают выделение адреналина. В 1921 г. австрийский ученый О. Леви обнаружил, что тормозное влияние блуждающего нерва на деятельность сердца опосредуется специфическим веществом, позднее идентифицированным как ацетилхолин. Г. Дейл привел веские аргументы в пользу того, что ацетилхолин является медиатором в вегетативных ганглиях и нервно-мышечных соединениях. Однако доказать наличие синаптической передачи с помощью медиатора, а не электрического потенциала стало возможным только в 50-х годах, когда исследователи начали использовать микроэлектроды и электронный микроскоп.

Все медиаторные соединения – это низкомолекулярные водорастворимые (дипольные) амины или аминокислоты и родственные им вещества. Ацетилхолин и катехоламины синтезируются из циркулирующих в крови предшественников, тогда как аминокислоты и пептиды в конечном счете образуются из глюкозы. Свидетельством консерватизма живой природы является то, что, несмотря на различие циркуляторных систем и метаболических путей, беспозвоночные и позвоночные животные в равной степени используют большинство общих медиаторов (табл. 1.3).

Таблица 1.3.

Характеристика некоторых медиаторов

Рис.30 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Число пептидов, для которых доказаны медиаторные свойства, постоянно растет. Многие из этих веществ содержат от 2 до 10 аминокислот, что соответствует размеру, с одной стороны, мелких аминокислотных медиаторов, с другой – гормонов. Обилие пептидов создает впечатление неоднородности этой группы веществ. В то же время нарастающая информация о их роли в организме позволяет увидеть универсальные принципы их действия. Предполагается, что нейроэндокринные клетки, секретирующие пептиды, первыми появились в эволюции примитивных нервных систем. По-видимому, нейропептиды, производимые ими, достаточно консервативны, поскольку, как уже упоминалось, одинаковые вещества или близкие последовательности аминокислот обнаружены у филогенетически различных ветвей животных – беспозвоночных и позвоночных. Многие из них найдены не только в мозге, но и, например, в кишечнике. Есть предположение, что все пептид эргические клетки связаны общностью эмбрионального происхождения. Пептиды по сравнению с другими медиаторами оказывают свое действие в чрезвычайно низких концентрациях.

С тех пор как в 1921 г. был идентифицирован первый медиатор, число их в арсенале науки постоянно увеличивается и в настоящее время составляет около 50. Многие биологически активные вещества имеют сходную с ними структуру. Они могут усиливать действие медиаторов (такие вещества называются агонистами) или подавлять их активность (антагонисты). Например, лекарственные препараты, снимающие тревогу (седуксен и др.), усиливают действие тормозного нейромедиатора – гамма-аминомасляной кислоты. Антидепрессанты (например, прозак) являются агонистами серотонина. Кокаин усиливает действие дофамина. Он связывается с белком, удаляющим дофамин из места его активности, тем самым увеличивая время его действия. Никотин активирует рецепторы ацетилхолина. Энкефалины и эндорфины являются природными лигандами морфиновых рецепторов: в норме именно они связываются с рецепторами, с которыми в особых условиях – при употреблении наркотика – взаимодействует морфин.

Важным звеном в нервном пути, который служит мишенью всех наркотиков – амфетамина, никотина, алкоголя и опиатов, – является небольшая часть базальных ганглиев, называемая nucleus accumbens (прилежащее ядро). Антипсихотические препараты (нейролептики) предотвращают связывание дофамина с его рецепторами. Содержащие дофамин нейроны, находящиеся в области вентральной покрышки среднего мозга, посылают свои аксоны в префронтальную кору и базальные ганглии, которые участвуют в двигательном контроле. Это обусловливает побочное действие длительно применяющихся нейролептиков, связанное с развитием дискинезий.

В настоящее время описан еще один класс посредников, имеющих чрезвычайно малые размеры молекул. К ним относят оксид азота (NO) и оксид углерода, или угарный газ (CO). Оксид азота опосредует действие ацетилхолина при расширении сосудов, в том числе сердечной мышцы. Именно он является активным компонентом нитроглицерина, используемого для расслабления резко суженных венечных сосудов сердца при стенокардии (грудной жабе). Этот посредник обнаружен в 2 % клеток мозга. Он крайне токсичен, поэтому используется макрофагами (одним из видов клеток иммунной системы) для уничтожения бактерий, проникающих в организм. Второй посредник – угарный газ – не менее токсичен и опасен для человека. В мозге он выполняет важную роль, активируя вторичный (клеточный) посредник – цГМФ.

Белки, служащие рецепторами нейромедиаторов, можно разделить на два класса в зависимости от механизма их действия. К одному классу относятся белки ионных каналов, меняющие свою форму и открывающие каналы, по которым проходят ионы. Рецепторы другого класса располагаются по соседству с мембранными G-белками, разрывающими богатую энергией фосфатную связь в молекуле гуанозинтрифосфата, что инициирует каскад биохимических процессов, ведущих к специфической клеточной реакции через вторичные (клеточные) посредники. Эффекты, производимые этими белками, характеризуются медленным началом действия и большей продолжительностью, по сравнению с реакциями, связанными с открытием ионных каналов.

Функции нейрона

В настоящее время можно говорить о наличии трех основных функций нейрона. Наиболее распространенной является суммация возбуждающих и тормозных синаптических потенциалов и передача возбуждения следующему нейрону.

Описаны нейроны (прежде всего нейроны гипоталамуса), обладающие секреторной функцией. Они синтезируют биологически активные вещества – статины и либерины – и выделяют их в кровеносные сосуды воротной системы гипоталамуса. С током крови эти вещества попадают в переднюю долю гипофиза и способствуют реализации или накоплению его гормонов.

Наконец, существуют нейроны, обладающие спонтанной ауторитмической активностью. Их называют пейсмекерами, или водителями ритма. Эндогенные процессы подобных нейронов приводят к периодическому изменению ионной проницаемости мембраны и генерированию ПД. Взаимодействуя с другими клетками, они синхронизируют активность этих клеток.

Типы нервных волокон

По скорости проведения импульса и строению нервные волокна разделяют на три группы – A, B и C. Волокна типа А делятся на 4 подгруппы: альфа-, бета-, гамма-, дельта-. Альфа-волокна имеют самый большой диаметр (12–22 мк) и обладают наибольшей скоростью проведения возбуждения (70–120 м/сек). Такие волокна проводят информацию к скелетным мышцам и от них в мозг, что позволяет человеку достаточно быстро приспосабливать положение своего тела к ситуации. Остальные нервные волокна имеют меньший диаметр (2–12 мк) и соответственно меньшую скорость проведения импульса. Они несут информацию от сенсорных органов. Гамма-волокна передают возбуждение от моторных нейронов спинного мозга к интрафузальным мышечным волокнам.

Таблица 1.4.

Свойства различных нервных волокон теплокровных (Бабский, 1972).

Рис.31 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

К волокнам типа В относятся миелинизированные волокна, преимущественно преганглионарные, распространенные в автономной нервной системе. Скорость проведения информации по ним составляет 3–14 м/сек.

Волокна типа С – это немиелинизированные волокна, скорость проведения информации в них составляет 2–6 м/сек. Большинство из них являются постганглионарными волокнами автономной нервной системы. Эти волокна проводят также сигналы о боли, тепле, давлении (табл. 1.4) (Бабский, 1972).

Словарь

Вегетативная нервная система

иннервирует гладкую мускулатуру и управляет деятельностью внутренних органов, поэтому ее также называют висцеральной.

Везикулы

особые пузырьки, расположенные в аксонной терминали, в которых хранится медиатор.

Гематоэнцефалический барьер

уникальный защитный слой между нейроном и кровеносным сосудом, образованный глиальными клетками.

Глия

функционально разнообразные клетки мозга, способные делиться, но не участвующие в процессе передачи информации.

Модуль

объединение нейронов коры, несущих одну функцию, в виде колонок. Модуль может включать более 100 тыс. клеток, огромное большинство которых образует локальные нейронные сети, выполняющие ту или иную функцию.

Нейрон

основная функциональная клетка мозга, участвующая в передаче и хранении информации. Это поляризованная клетка, которая с помощью сильно разветвленных многочисленных отростков – дендритов – получает сигналы и через длинный неразветвленный отросток аксон посылает информацию другой клетке.

Периферическая нервная система —

состоит из соматической и вегетативной (автономной).

Соматическая нервная система —

обеспечивает контроль сокращений поперечно-полосатых мышц, т. е. всей скелетной мускулатуры. Ее нейроны находятся в передних рогах спинного мозга, а их аксоны через передние корешки спинного мозга иннервируют скелетные мышцы.

Потенциал действия

временное изменение мембранного потенциала нейрона под действием приходящих сигналов. Распространяется в обоих направлениях от места возникновения (аксонного холмика).

Синапс

специализированный межклеточный контакт. Представляет собой мембраны двух соседних нейронов (передающего информацию и получающего ее) и пространство между ними, которое называется синаптической щелью.

Спинной мозг —

можно рассматривать как продолжение заднего мозга; является центральным коммутатором (переключателем), передающим сообщения из ЦНС на периферию и обратно.

Центральная нервная система —

включает структуры, расположенные внутри черепа и позвоночника: головной и спинной мозг. Все, что находится вне этих костных структур, относится к периферической нервной системе.

Контрольные вопросы

1. Что такое психофизиология?

2. В чем единство и различие психофизиологии и физиологической психологии?

3. Структуры центральной нервной системы.

4. Периферическая нервная система. Симпатическая и парасимпатическая системы.

5. Нейрон и его функция.

6. Типы глиальных клеток.

7. Передача информации в ЦНС.

8. Синапс и синаптическая передача.

9. Что такое медиатор?

10. Характеристика наиболее известных медиаторов.

11. Типы нервных волокон.

Глава 2

Методы получения психофизиологической информации

Рис.3 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Н. Н. Герардов. Плакат театрализованного бала. Музей 10. Художественные собрания СССР: сборник статей. Искусство русского модерна. Сост. А. С. Логинова М.: Советский художник, 1989

Р. У. Эшби (1964) сформулировал положение о том, что сложность объекта исследования предопределяет сложность метода его исследования. Это положение получило название принципа адекватности. Согласно ему, неправомерно изучать сложный объект, каковым является нейрофизиологический механизм психической деятельности, элементарными методами.

Регистрация психофизиологических параметров

По-видимому, самым адекватным прибором для оценки психофизиологических реакций будет другой человек, органы которого в процессе эволюции приспособились для этого. Общаясь, люди ежедневно пользуются этим «прибором», чтобы по поведенческим признакам определить мысли и чувства другого. В то же время каждый человек вносит в свою оценку «шум», зависящий от его воспитания, особенностей развития, наличия или отсутствия болезненных отклонений и так далее. То, что величина такого «шума» у людей различна, мешает использовать этот природный инструмент в качестве экспериментального (рис. 2.1).

Созданные человеком приборы также вносят «шум», но он зависит от конкретных причин, которые можно определить и вычесть из результата, что и делает их более эффективными в исследовании.

Многие физиологические процессы являются по своей сути электрохимическими, поэтому их можно зафиксировать, приложив электроды непосредственно на изучаемый участок тела. Первые доказательства электрической природы физиологических процессов обнаружил Луиджи Гальвани в 1786 г., назвавший эту движущую силу «животным электричеством». Он искренне верил в особые качества этого электричества по сравнению с электричеством, открытым до него физиками (Хэссет, 1981). Дальнейшие исследования не подтвердили его предположения.

Обычно величина регистрируемых физиологических реакций в норме очень невелика, поэтому их усиливают и затем передают на записывающее устройство. Те физиологические процессы, которые имеют отличную от электрической природу, предварительно преобразуют в электрический сигнал, чтобы затем зафиксировать.

Рис.4 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.1. Э. Руссо. Ритуалы и мифы нашего времени (обложка к книге E. Imber-Black & J. Roberts, 1992).

Основным записывающим устройством, используемым в психофизиологических исследованиях, является полиграф – прибор, позволяющий одновременно фиксировать изменения электрического потенциала по нескольким каналам (2, 4, 6, 8, 16 и более) (рис. 2.2). Если электроды накладывают на поверхность головы, то получаемая запись называется электроэнцефалограммой (ЭЭГ); если они размещаются на обеих руках, или на руке и ноге, или в области сердца, то запись носит название электрокардиограммы (ЭКГ); в случае, когда они располагаются на тыльной и ладонной поверхности руки, записывается кожно-гальваническая реакция (КГР); при расположении электродов вдоль мышцы можно зафиксировать электрическую активность мышц, т. е. получить электромиограмму (ЭМГ); электроды, расположенные по обе стороны глаз, дают электроокуло грамму (ЭОГ). Более подробно об этих устройствах и методах их применения сказано ниже.

Рис.32 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.2. Образец многоканальной записи физиологических функций испытуемого при прослушивании (а) и воспроизведении (б) списка слов. 1, 2 – ЭЭГ, отведения О1 и О2 левое и правое полушария соответственно; 3, 4 – КГР левой и правой руки; 5 – фонограмма (сигналы появляются в моменты предъявления слов магнитофоном или при устных ответах испытуемого); 6 – ЭКГ; 7 – отметка программы опыта (Леутин, Николаева, 1988).

В зависимости от способа наложения электродов и от типа самих электродов при регистрации ЭЭГ, кроме самой ЭЭГ, можно записать также ЭМГ, если человек в процессе обследования будет напрягать лоб или говорить; ЭОГ – если он будет двигать глазами; и даже ЭКГ – если электроды будут, например, сильно прижаты к поверхности кожи и пережмут сосуд, расположенный под ним. Эти ненужные в данный момент для исследователя записи являются помехами и называются артефактами. Электрические сигналы могут генерироваться в некоторых случаях и самим оборудованием, что приводит к появлению наводки. Получение безартефактной записи в психофизиологии сродни искусству и требует многих навыков от исследователя.

В настоящее время существуют специальные программы, позволяющие вычленять безартефактные участки записи, но тем не менее каждую запись рекомендуется предварительно просмотреть, поскольку ни одна программа не сможет пока заменить глаз опытного психофизиолога.

Если раньше исследователи просто изучали характер кривых, то сейчас полиграф обычно сопрягается с компьютером, оснащенным соответствующим программным обеспечением.

При наложении двух электродов на исследуемый участок ткани можно оценить изменение разности потенциала между этими двумя точками. Такую запись называют биполярной. В том случае, когда один из электродов расположен на активной ткани (этот электрод называется активным), а другой (референтный) – на относительно неактивной ткани, запись будет называться монополярной.

Близкородственные науки – психофизиология и физиологическая психология – пользуются полиграфом в различных экспериментальных условиях. Преимущество психофизиологии заключается в том, что в ней оценивают реакции человека без хирургического вмешательства. Это преимущество одновременно является и недостатком, поскольку лишает исследователя возможности непосредственного сопоставления психологических реакций с изменениями активности отдельных нейронов. Физиологическая психология, напротив, активно использует методы внедрения в мозг и другие ткани, и потому в таких экспериментах участвуют либо животные, либо люди, воздействие на мозг которых делают по медицинским показаниям. Это ограничивает интерпретацию такого рода исследования и распространение его результатов на здорового человека. В настоящем учебнике использованы результаты, полученные исследователями обеих областей знания, поскольку они углубляют и дополняют друг друга.

Электроэнцефалограмма и методы ее регистрации

В 1929 г. австрийский психиатр Ганс Бергер обнаружил, что с помощью игольчатых платиновых электродов, помещенных на различные точки поверхности головы человека, можно зарегистрировать электрическую активность мозга. Эти записи он и назвал электроэнцефалограммой (ЭЭГ). Хотя ЭЭГ снимается с поверхности головы, Г. Бергер сумел доказать, что часть электрической активности обусловлена деятельностью мозга, а не покрывающих его поверхность тканей (Berger, 1929).

Открытие Г. Бергера было встречено весьма холодно, и этот метод получил признание лишь после того, как Е. Д. Эдриан и Б. Х. Мэттьюз смогли непосредственно продемонстрировать его на заседании Английского физиологического общества в 1935 г. Сам Е. Д. Эдриан был в качестве испытуемого и, закрывая глаза, показал появление альфа-ритма на ЭЭГ (Хэссет, 1981).

Интерпретация электроэнцефалографических данных требует учета целого ряда параметров – формы волн, их амплитуды, расположения электродов, с которых получена запись, и т. д. Наиболее важными из них являются амплитуда волн и частота. Амплитуда измеряется как расстояние от базовой линии до пика волны. Однако существуют значительные трудности в определении базовой линии, поэтому на практике обычно используют измерение от пика до пика (рис. 2.3). Под частотой понимается число полных циклов, совершаемых волной за 1 сек. Этот показатель измеряется в герцах (Гц). Величина, обратная частоте, называется периодом волны. Известно, что амплитуда волн ЭЭГ находится в обратно пропорциональной зависимости от их частоты (Cooper e. a., 1980).

Рис.33 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.3. Амплитуда волны и ее цикл.

Ритмичность электроэнцефалографического сигнала позволяет количественно описать записи ЭЭГ. Первым из описанных ритмов электрической активности мозга был альфа-ритм (Berger, 1929). Он представляет собой ритмические колебания электрической активности 8–12 раз в сек (8–12 Гц) с амплитудой около 50 мкВ. Эта активность преобладает у здорового человека в состоянии спокойного бодрствования с закрытыми глазами и наблюдается преимущественно в затылочных областях (рис. 2.4). Альфа-ритм отсутствует у слепорожденных людей (Новикова, 1978). Ритмами той же частоты, но с иной формой волны и в специфических отведениях, являются мю-ритм, регистрируемый в роландовой борозде, каппа-ритм, отмечаемый при наложении электродов в височном отведении (рис. 2.5).

Рис.34 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.4. Классификация волн ЭЭГ по частоте. Образцы дельта- (а), тета- (б), альфа- (в), и бета- (г) активности; (д) – блокада альфа-ритма при открытии глаз; (е) – отметка времени (Cooper, 1980).

Рис.35 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.5. Образцы специфических волн: а – К-комплекс; б – ламбда-волна; в – мю-ритм; г – спайк; д – острая волна; е – комплекс спайк-медленная волна. Слева дается калибровочная линия, соответствующая 100 мВ, справа – расположение электродов на голове. Внизу отметка времени 1 сек (Cooper, 1980).

Г. Бергер описал и другой тип волн – бета-ритм, обнаруживаемый у человека в состоянии активного бодрствования. Это колебания с частотой более 13 Гц и небольшой (около 25 мкВ) амплитудой.

Дальнейшие исследования выявили более медленные колебания, которые были названы тета- и дельта-волнами, а также более быстрые – гамма-волны. Тета-волны имеют частоту от 3,5 до 7,5 Гц и амплитуду от 5 до 100 мкВ, дельта-волны – 1–3,5 Гц и 20–200 мкВ соответственно. Чем медленнее волны, тем больше их амплитуда. Гамма-волны – колебания с частотой более 30 Гц и амплитудой около 2 мкВ (рис. 2.4).

Каждый из ритмов имеет свою преимущественную локализацию: альфа-ритм регистрируется в затылочном и теменном отведениях; тета-волны – в лобных и височных, бета-ритм – в прецентральных и фронтальных, гамма-ритм – в прецентральных, фронтальных, височных, теменных; дельта-ритм не имеет определенной локализации.

При визуальном анализе ЭЭГ обычно определялись два показателя – длительность альфа-ритма и блокада альфа-ритма, которая фиксируется при предъявлении испытуемому того или иного раздражителя (рис. 2.4). Экспериментаторы также пытались обнаружить на ЭЭГ испытуемых особые волны, отличающиеся от фоновой регистрации. Даваемое им название связано либо с их формой, либо с тем местом, где они выявляются. К ним относятся: К-комплекс, ламбда-волны, мю-ритм, спайк, острая волна.

К-комплекс – это сочетание медленной волны с острой волной, вслед за которыми часто идут волны частотой около 14 Гц. К-комплекс возникает во время сна или спонтанно у бодрствующего человека. Максимальная амплитуда отмечается в вертексе и обычно не превышает 200 мВ (Roth e. a., 1956) (рис. 2.5). Ламбда-волны – монофазные положительные острые волны, возникающие в окципитальной области, связанные с движением глаз. Их амплитуда меньше 50 мВ, частота – 12–14 Гц (Green, 1957). Мю-ритм – группа аркообразных или гребневидных волн частотой 7–11 Гц, амплитудой меньше 50 мВ, регистрирующихся в центральных областях головы. Они блокируются двигательной активностью или тактильной стимуляцией (Gastaut e. a., 1952). Спайк – волна, четко отличающаяся от фоновой активности, с выраженным пиком длительностью от 20 до 70 мс. Первичный компонент обычно является негативным (Maulsby, 1971). Острая волна – ясно отличающаяся от фоновой активности волна с подчеркнутым пиком длительностью 70–200 мс. Спайк-медленная волна – последовательность поверхностно негативных медленных волн (частотой 2,5–3,5 Гц), каждая из которых ассоциируется со спайком. Амплитуда этого комплекса может достигать 1000 мВ (Chatrian e. a., 1968) (рис. 2.5).

Визуальный анализ позволяет оценить лишь очевидные изменения биоэлектрической активности мозга (рис. 2.6). В настоящее время разработан метод для регистрации медленных и сверхмедленных потенциалов, имеющих длительность периода от нескольких секунд и более (Илюхина, 1977). Такие потенциалы регистрируются с использованием усилителей постоянного тока (рис. 2.7).

Рис.36 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.6. Реакция депрессии альфа-ритма при непрерывном освещении глаза. 1 – отметка раздражителя, 2 – пневмограмма, 3–12 – униполярная регистрация ЭЭГ, 13 – ЭКГ (Лебедева, 1977).

Для более глубокого анализа используются компьютерные методы обработки сигнала, позволяющие извлекать существенно больше информации. Традиционный способ интерпретации электрических сигналов, отраженных в нерегулярных временных рядах, основан на разложении этих сигналов с помощью Фурье-преобразования. При этом в сигнале выделяются частотные компоненты. Затем рассчитывается мощность ЭЭГ в каждой частотной полосе для всех отведений, и с помощью специальных цветовых шкал результаты представляются в виде наглядных картин, где цвет отражает интенсивность ритмов каждого диапазона в различных частях мозга. Этот метод получил название картирования мозга (рис. 2.8). Возможно также использование не цвета, а изолиний при изображении одних и тех же мощностей показателя.

Однако спектральный анализ ЭЭГ в этой парадигме имеет ограниченные возможности в формировании картины электрической активности мозга. В настоящее время появилась возможность применять для анализа ЭЭГ нелинейную теорию систем (Lutzenberger e. a., 1992).

При нелинейном динамическом анализе исследуемые сигналы ЭЭГ рассматриваются как стационарные, то есть предполагается, что значения средних, дисперсии и автоковариационная функция остаются неизменными в течение определенного промежутка времени. Реальные сигналы ЭЭГ сохраняют стационарность в течение длительных интервалов времени с небольшой вероятностью, поэтому эта проблема решается несколькими способами. Прежде всего, для анализа используются относительно короткие временные промежутки (эпохи). Считается, что ошибка в абсолютной оценке параметров за столь короткий срок будет систематической, что позволит корректное сравнение контрольного и экспериментального условий (Pritchard, Duke, 1995). Второй способ решения проблемы заключается в использовании методов, нечувствительных к нестационарности (Skinner, 1994).

Рис.37 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.7. Динамика медленных электрических процессов в подкорковых образованиях головного мозга человека при тесте на оперативную память.

I – предъявление теста; II – этап сохранения; III – воспроизведение теста. 1, 2, 3 – вентролатеральное ядро зрительного бугра; 4 – скорлупа; 5, 6, 7 – бледный шар; 8 – красное ядро; 9 – внутренняя капсула; 10 – передневентральное ядро зрительного бугра; 11 – ретикулярное ядро зрительного бугра; 12 – срединный центр зрительного бугра. Регистрация на энцефалографе с постоянной времени 2,5 сек (Илюхина, 1977).

Рис.38 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.8. Суммарные топографические карты амплитуды спектра мощности α-ритма ЭЭГ при прослушивании классической (а, б) и рок-музыки (в, г).

а, в – здоровые испытуемые, б, г – больные депрессией. Из каждой карты вычтена соответствующая ей фоновая карта. Справа – шкала амплитуд спектра мощности, мкВ (Михайлова, 1992).

Чтобы отделить сигнала от шума, требуется высокое качество регистрируемого сигнала, либо из кусков качественных записей конструируются наборы суррогатных (искусственных) временных рядов, что позволяет сравнивать результаты нелинейного динамического анализа для оригинальных данных и фильтрованного шума. Несмотря на отсутствие однозначных доказательств действительной хаотичности реального сигнала ЭЭГ, механизм его генерации указывает гипотетически на происхождение от нелинейной динамической системы, управляемой квазипериодическими законами (Афтанас, 2000).

Для характеристики нейрональных динамических систем используются две принципиально различные категории нелинейных динамических мер. К первой категории относится размерностная комплексность (синонимы: корреляционная размерность, фрактальная размерность). Она является показателем общей комплексности (сложности) корковой динамики и отражает ее статические свойства (Pritchard, Duke, 1995). Для изучения динамических характеристик системы, ее изменений во времени, используют энтропию Колмогорова (К2), наибольшую экспоненту Ляпунова (L1) и нелинейное предсказание. Энтропия Колмогорова оценивает степень хаотичности системы, то есть среднюю скорость, с которой информация о системе теряется. Если этот показатель стремится к нулю, то есть нет изменений информации о системе, система становится полностью предсказуемой. Наоборот, для хаотичной системы метрика энтропии имеет определенное конечное положительное значение. И чем больше эта величина, тем более хаотичной является система. Спектр экспонент Ляпунова дает оценку схождения или расхождения близлежащих траекторий в фазовом пространстве, отражая чувствительность системы к исходным значениям. Наличие положительной главной экспоненты является дополнительным свидетельством хаотического поведения изучаемой системы (Афтанас, 2000). Нелинейное предсказание или прогноз характеризует вероятность, с которой может быть предсказана динамика временного ряда. Она основывается на расчете коэффициентов корреляции между наблюдаемым и предсказанными временными рядами. Поэтому она позволяет отслеживать потерю информации во времени.

Впервые оценка фрактальной размерности ЭЭГ произведена в 1985 г. (Babloyantz e.a., 1985). Сейчас получены доказательства относительно более низкой размерности альфа-ритма по сравнению с суммарной ЭЭГ (Pritchard, Duke, 1995).

Динамическая мера фрактальной размерности отражает минимальное количество активированных нейронов и нейрональных цепей, лежащих в основе исследуемого сегмента ЭЭГ. Синхронизация их активности отражает состояние покоя корковых сетей и соответствует высокой степени кооперации между нейронными сетями, что обнаруживается в низкой фрактальной размерности. Десинхронизация, связанная с процессами активной переработки информации в коре головного мозга, характеризует усиление конкурентного взаимодействия между нейронными сетями и сопровождается повышением фрактальной размерности ЭЭГ. Снижение конкуренции между клеточными ансамблями (и, следовательно, снижение уровней фрактальной размерности ЭЭГ) может происходить не только вследствие синхронизации корковых процессов, но и в результате более эффективного использования специализированных для данного типа переработки информации областей коры. В этом случае наблюдается выключение активности нейронных сетей, не вовлеченных в выполнение данного задания, в результате чего более низкие уровни фрактальной размерности ЭЭГ могут отражать интенсификацию процессов переработки информации вовлеченными областями коры.

Другим способом анализа процессов, происходящих в ЦНС, является метод пространственной синхронизации биопотенциалов мозга или когерентности. Этот метод был предложен и разработан М. Н. Ливановым (1972; 1989). Когерентный анализ позволяет определить сходство активности различных областей коры в одном и том же частотном диапазоне и, предположительно, оценить количество корко-корковых соединений и их интенсивность между двумя областями коры (Ливанов, 1989).

Оценка пространственной синхронизации биопотенциалов мозга, основанная на быстром преобразовании Фурье, получила дальнейшее развитие в работах А. М. Иваницкого, предложившего новый метод картирования внутрикорковых взаимодействий. Он основывается на выявлении в ЭЭГ с помощью спектрального анализа пиков активности, совпадающих в разных отведениях по частоте (Иваницкий, 1990, 1996).

В настоящее время разработана новая нелинейная мера – совместная фрактальная размерность, позволяющая количественно оценить степень динамического взаимодействия двух одновременно регистрируемых аттракторов из различных областей коры головного мозга. (Stam e.a., 1996). Каждый из этих аттракторов представляет собой одновременно включенные в процесс самоорганизованные в корковом пространстве нейронные сети, осциллирующие на различных частотах (Stam e.a., 1996). Оценка совместной размерности ЭЭГ не просто отражает фрактальную размерность в области индивидуального отведения, а характеризует степень динамического кооперативного взаимодействия между пространственно разделенными аттракторами. Это принципиально отличает механизмы совместной размерности от процессов, которые отражаются в когерентности, поскольку когерентность оценивает степень взаимодействия дистантно расположенных нейронных сетей, осциллирующих на одной частоте (Ливанов, 1989; Иваницкий, 1996).

Динамика здоровой физиологической системы должна продуцировать высоко нерегулярные и комплексные типы вариативности, в то время как заболевание и старение связаны с потерей комплексности и большей регулярностью (Ehlers, 1995).

Запись ЭЭГ осуществляется с помощью разнообразных электродов, форма и исполнение которых зависит от специфики исследования. Они должны обладать малым переходным сопротивлением, минимальной поляризацией и антикоррозийными свойствами. Среди наиболее распространенных материалов, используемых для электродов, – серебро, посеребренная медь, графит (Гречин, 1977). Подпаянные к электродам проводники, необходимые для подключения датчиков на вход приборов, должны обладать высококачественной изоляцией. Для улучшения фиксации ЭЭГ используют разнообразные прокладки и пасты, снижающие переходное сопротивление, а кожа испытуемого предварительно обезжиривается спиртом или смесью спирта с эфиром (50 х 50).

Для того чтобы результаты различных исследователей можно было сопоставлять, Международная федерация обществ ЭЭГ рекомендовала стандартный метод расположения электродов на поверхности скальпа – систему «10–20» (Jasper, 1958). В соответствии с требованиями этой системы производят три основных измерения: расстояние по сагиттальной линии между носовой впадиной и затылочным бугром, длину от одного наружного слухового прохода через макушку головы до другого во фронтальной плоскости, длину окружности головы. Каждая из этих величин принимается за 100 %. В продольном направлении лобный и затылочный электроды устанавливаются в точках, отстоящих от переносицы и затылочного бугра на расстоянии 10 % общего расстояния. Остальные 3 электрода располагаются на расстояниях 20 % от этих двух и друг от друга.

Рис.39 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.9. Международная схема расстановки электродов – схема «10–20».

А: а – вид сбоку, б – вид спереди, в – вид сверху (сечение по височной линии). Б – проекция электродов на доли мозга: а – вид сверху, б – вид сбоку. Косая штриховка – височная область, перекрестная – затылочная, горизонтальная – теменная область; не заштрихована лобная область и область центральной извилины. N – переносица. J – затылочный бугор (Jasper, 1958).

Всего устанавливается 5 рядов электродов: один по сагиттальной линии и по два параллельных ряда справа и слева на равных расстояниях, составляющих по 20 % от общей длины во фронтальной плоскости. Височные ряды электродов отстоят от наружных слуховых проходов на 10 % общего поперечного расстояния. В общей сложности на поверхности головы располагается 21 электрод (рис. 2.9).

Записи ЭЭГ являются информативными при диагностике эпилепсии или мозговых опухолей, исследовании стадий сна и бодрствования (рис. 2.10).

Являясь достаточно эффективным методом в оценке активности мозга в целом, электроэнцефалография не позволяет судить о возбуждении отдельных нейронов или нейронных ассоциаций.

Регистрация импульсной активности нервных клеток

Импульсная активность отдельных нейронов может оцениваться лишь у животных и в отдельных случаях во время оперативного вмешательства на мозге человека. Впервые активность коркового нейрона головного мозга человека была зарегистрирована А. Уардом и Л. Томасом (Ward, Thomas, 1955) в процессе операции у больного по поводу эпилепсии.

Сейчас для регистрации нейронной импульсной активности головного мозга человека используются микроэлектроды с диаметром кончиков 0,5–10 мкм. Они могут быть выполнены из нержавеющей стали, вольфрама, платиноиридиевых сплавов, золота. Электроды вводятся в мозг с помощью специальных микроманипуляторов, позволяющих точно подводить электрод к нужному месту.

Рис.40 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.10. Провокация пароксизмальной активности при гипервентиляции (Лебедева, 1977). 1–16 – каналы отведений

С 1964 г. производят регистрацию импульсной активности нейронов подкорковых структур мозга при стереотаксических операциях. Стереотаксический аппарат позволяет вводить электрод с большой точностью в необходимую структуру, расположенную в глубине мозга (Трохачев, Матвеев, 1977).

В некоторых случаях больным вживляют долгосрочные электроды, например, для выявления эпилептогенных очагов. В отличие от одномоментной регистрации применение электродов, оставляемых на длительный срок в ткани мозга, имеет свои особенности. Возможность стабильной регистрации появляется только на 15–20-й день после операции, что связано с морфологическими изменениями мозгового субстрата, возникающими из-за введения инородного тела – электрода, и сохраняется в течение 3–5 месяцев.

В этом случае речь идет о внеклеточном (экстрацеллюлярном) отведении потенциалов. Если электрическая активность отдельного нейрона имеет определенный ритм, закономерно изменяющийся при его различных функциональных состояниях, то электрическая активность группы нейронов обладает сложной структурой. На нейрограмме в этом случае отражается суммарная активность многих нейронов, возбуждающихся в разное время, различающихся по амплитуде, частоте и фазе (рис. 2.11). Полученные данные обрабатываются автоматически по специальным программам (Трохачев, Матвеев, 1977).

Рис.41 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.11. Электрограмма нейронного пула. Вверху штрихами произведена отметка времени м/сек (Трохачев, Матвеев, 1977).

Регистрация вызванных потенциалов мозга человека и потенциалов, связанных с событиями

Предъявление одиночного стимула мало что меняет в картине ЭЭГ, поскольку эти изменения маскируются общей фоновой активностью. Для того чтобы сделать изменения в ответ на определенный стимул видимыми, используют компьютер, усредняющий записи волновой активности при повторных предъявлениях того же стимула. Случайная по отношению к предъявлению стимула электрическая активность нивелируется, тогда как специфическая активность, связанная со стимулом, будет усиливаться. Такая активность называется вызванным потенциалом (ВП). Этот биоэлектрический феномен был описан еще в XIX веке Ричардом Кейтоном (Caton, 1877, см.: Петушков, 1977). Технику когерентного накопления волновой активности при повторных предъявлениях стимула разработал в 1951 г. Дж. Доусон. В зависимости от поставленных в исследовании задач усреднение ЭЭГ активности производилось либо относительно стимула, либо от начала движения, следовавшего за стимулом. Полученные в различных экспериментальных ситуациях потенциалы стали называть общим термином – потенциалы, связанные с событиями.

Вызванный потенциал (ВП) состоит из последовательности отрицательных и положительных отклонений от основной линии и длится около 500 мсек после окончания действия стимула. У ВП можно оценить амплитуду и латентный период возникновения (рис. 2.12).

Рис.42 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.12. Одиночный вызванный потенциал. Регистрация с поверхности головы в области проекции сенсомоторной зоны мозга при электрической стимуляции латерального отдела зрительного бугра (Jasper, 1958).

На величину ВП может влиять модальность стимула. Так, слуховые ВП отличаются от зрительных, зрительные – от тактильных и т. д. Вызванные потенциалы, возникающие в ответ на световые, звуковые, тактильные или электрические раздражения в проекционной зоне соответствующего анализатора и имеющие короткий латентный период, называются первичными; все остальные, обладающие другим пространственным распределением и большим латентным периодом, – вторичными, или поздними ответами (Петушков, 1977).

Один и тот же ВП может быть обусловлен многими психологическим процессами, а одни и те же психические процессы могут быть связаны с разными ВП (Event… 1991).

Для регистрации ВП используются те же электроды, что и для записи ЭЭГ, и требуется соблюдение определенных условий проведения исследований. К ним относится унификация методических приемов всей серии экспериментов, проведение их на одном и том же испытуемом, в одно и то же время, в одном и том же состоянии, с использованием одних и тех же параметров стимуляции. Обработка данных включает в себя методы математического, статистического анализа. В простейшем случае определяют латентный период, амплитуду и длительность отдельных фаз (Петушков, 1977).

Оценка локального кровотока мозга

Эффективность работы мозга может быть оценена по интенсивности кровотока в нем, поскольку он отражает скорость обменных процессов. В мозге отсутствуют запасы глюкозы, в отличие, например, от печени или мышц, поэтому изменение локального кровотока является косвенным свидетельством изменения активности соответствующей структуры мозга. Нильс Лассен и Дэвид Ингвар (Lassen, Ingvar, 1972) разработали современные методы оценки кровотока мозга. Вводя в сонные артерии радиоактивный изотоп ксенона (Кs133), уже через 10 сек. можно с помощью специальных детекторов наблюдать за током крови. Испускаемый этим изотопом поток гамма-излучения считается безвредным, а сам изотоп вымывается из крови в течение 15 мин. Наблюдение же за ним возможно в течение 40–50 сек. Недостатком метода является то, что измерение кровотока возможно только в участках мозга, получающих кровь из соответствующей сонной артерии, а участки, получающие кровь из других сосудов, остаются недоступными.

В современном варианте такого рода обследования испытуемый в течение 1 мин. вдыхает смесь воздуха с изотопом ксенона, а затем регистрируется интенсивность кровотока с помощью детектора изотопов – шлема со специальными датчиками.

Существующие ныне детекторы позволяют определять состояние кровотока только в коре мозга, не проникая в более глубокие структуры. Измерение кровотока может отражать достаточно длительные изменения активности мозга (не менее 2 минут) и неспособно давать информацию о быстропротекающих процессах.

Томографические методы

Томография (томе – срез, греч.) основана на получении отображения срезов мозга с помощью специальных техник. Идея этого метода была предложена Дж. Родоном, который показал, что структуру объекта можно восстановить по совокупности его проекций, а сам объект может быть описан множеством своих проекций.

Первый компьютерный томограф был создан в 1973 г. Авторы – А. Кормак и Г. Хаунсфилд – удостоены за его создание Нобелевской премии в области медицины и физиологии в 1979 г. Через год после этого начал работу первый томограф, в котором для построения изображения использовалось явление ядерно-магнитного резонанса. В конце 80-х годов появился позитронно-эмиссионный томограф (Лалаянц, Милованова, 1991).

Использование томографов позволило изучать строение и функционирование мозга прижизненно, что существенно облегчило процедуру исследования этого органа и понимания процессов, происходящих в нем.

Компьютерная томография

Компьютерная томография – это современный метод, позволяющий визуализировать особенности строения мозга человека с помощью компьютера и рентгеновской установки (рис. 2.13).

Рис.5 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.13. Сканирование с помощью метода компьютерной томографии (Carlson, 1992).

В установке, предназначенной для компьютерной томографии, источник рентгеновских лучей вращается в одной плоскости вокруг головы, а рентгеновские детекторы постоянно регистрируют интенсивность проходящего сквозь голову излучения. Компьютерные программы преобразуют полученные данные в рисунки срезов мозга различной глубины (рис. 2.14). Толщина подобных срезов может не превышать 5 мм.

Рис.6 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.14. Сканирование с помощью метода компьютерной томографии.

(а) Снимок, полученный на компьютерном томографе; (б) Фотография среза мозга на том же уровне, что и на снимке, приведенном на рисунке (а) (Carlson, 1992).

Для улучшения качества изображения перед исследованием пациенту вводят контрастное вещество. Особенно эффективна компьютерная томо графия для исследования повреждений мозга, например, вследствие инсульта (рис. 2.15), рассеянного склероза, опухолей. Кроме очевидной необходимости этого метода для хирургического исследования перед операциями он представляет значительный интерес для психофизиологов и нейрофизиологов, которые изучают когнитивные процессы и поведение людей, имеющих повреждения мозга.

Информативность томограмм увеличивается благодаря применению контрастных веществ, например, верографина (препарата, содержащего йод). Полученная информация в виде снимков может храниться на магнитных носителях, что позволяет пересылать их по каналам компьютерной связи на любые расстояния для консультации специалистов (Лалаянц, Милованова, 1991).

Рис.7 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.15. Снимки мозга больных, перенесших инсульт на правой половине мозга, полученные с помощью метода компьютерной томографии (Carlson, 1992).

Позитронно-эмиссионная томография (ПЭТ)

Этот метод позволяет оценить метаболическую активность в различных участках мозга. Он во многом схож с авторадиографией: испытуемый проглатывает радиоактивное соединение, позволяющее проследить изменения кровотока в том или ином отделе мозга, что косвенно указывает на уровень метаболической активности в нем. Таким радиоактивным соединением может быть 2-дезоксиглюкоза, имеющая одну из меток – радиоактивные изотопы углерода (С11), фтора (F18), кислорода (О15), азота (N13).

Время полураспада этих веществ составляет от 110 сек для фтора до 120 сек для кислорода. Метаболически активные участки мозга с большей интенсивностью поглощают 2-дезоксиглюкозу из крови, которая в отличие от обычной глюкозы не включается в метаболические процессы и только накапливается в мозге. Радиоактивные изотопы излучают позитроны, которые, встречая в мозге электроны, уничтожаются (аннигилируют), излучая 2 гамма-луча, направляющиеся в противоположные стороны. В специальной камере монтируются детекторы гамма-лучей, собранные в кольца. В камеру помещается голова испытуемого, радиоактивные молекулы 2-дезоксиглюкозы фиксируются сканером (Plum e. a., 1976) (рис. 2.16). Полученные данные обрабатываются компьютером, и на основе результатов воссоздается картина метаболически активных участков мозга.

Рис.8 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.16. Результаты ПЭТ сканирования мозга здорового человека в различных экспериментальных ситуациях (Phelps, Mazziotta, 1985).

Особенностью ПЭТ является то, что она позволяет снимать «динамические» картины функционирования мозга, решающего ту или иную задачу или пребывающего во сне. Использование кислорода позволяет получать характеристики регионального кровотока, объема крови, потребления кислорода. Однако и кислород, и глюкоза попадают в мозг с током крови, изменение которого происходит иногда в течение нескольких минут. Поэтому быстропротекающие процессы пока этим методом фиксировать не удается.

Визуализация строения мозга с помощью метода ядерно-магнитного резонанса

Метод ядерно-магнитного резонанса (ЯМР) позволяет визуализировать строение мозга, как и при компьютерной томографии, но он не связан с использованием радиоактивных лучей. Вокруг головы испытуемого создается очень сильное магнитное поле, которое воздействует на ядра атомов водорода, имеющих внутреннее вращение. В обычных условиях оси вращения каждого ядра имеют случайное направление. В магнитном поле они меняют ориентацию в соответствии с силовыми линиями этого поля. Выключение поля ведет к тому, что атомы утрачивают единое направление осей вращения и вследствие этого начинают излучать энергию. Эту энергию фиксирует датчик, а информация передается на компьютер.

Повторение циклов воздействия магнитного поля и его выключения дает достаточное количество данных для того, чтобы на компьютере было создано послойное изображение мозга. Для повышения разрешающей способности таких томографов иногда также используются контрастные вещества, содержащие таллий и гадолиний (Black e. a., 1989).

ЯМР-томограф высокого разрешения позволяет видеть клеточные структуры коры головного мозга при жизни человека (Press e. a., 1989). Наложение ПЭТ-томограмм на ЯМР-изображения дает возможность более тонко дифференцировать те или иные отделы коры и подкорковых структур (Лалянц, Милованова, 1991).

В последнее время появилась возможность повысить разрешающую способность ЯМР-томографов с помощью использования моноклональных антител против специфического антигена. В этом случае антиген «метят» веществом, детектируемым томографом. Это позволяет с большей точностью судить о распределении в специфических областях мозга рецепторов к нейромедиаторам (Pollit, 1989).

Рис.9 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.17. Снимки мозга, полученные с помощью метода ядерно-магнитного резонанса (Carlson, 1992).

Поскольку водород содержится не в одинаковых концентрациях в разных тканях, что зависит как от структуры ткани, так и от ее метаболической активности, то при сканировании излучения этот факт используется для создания визуальной картины тканей. Получаемые с помощью указанного метода картины яснее и четче, чем изображения, представленные методом компьютерной томографии. Однако использование этого метода является более дорогим по сравнению с другими (рис. 2.17).

Реоэнцефалография

Реоэнцефалография (РЭГ) представляет собой метод исследования кровообращения головного мозга человека, основанный на регистрации изменений пассивных электрических характеристик между электродами, фиксированными на кожных покровах головы (Москаленко, 1977). Идея, положенная в основу метода, состоит в том, что электрические параметры тканей мозга различны, поэтому любые изменения удельных соотношений в закрытой черепной коробке будут отражаться на комплексном электрическом сопротивлении.

Наиболее распространенная модификация этого метода основана на анализе динамики амплитуды и формы пульсовых колебаний электрического сопротивления при различных состояниях системы внутричерепного кровообращения (рис. 2.18). Приборы для регистрации РЭГ представляют собой приставку с внутренним усилителем к электроэнцефалографу или электрокардиографу.

Рис.43 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.18. Схема расположения тканей между электродами, наложенными на кожные покровы головы человека (а), и ее электрический эквивалент (б).

1 – кожа, 2 – мягкие ткани головы, 3 – кости черепа, 4 – пространства, заполненные ликвором, 5 – ткань мозга, 6 – электроды: Rк и Cк – активное и емкостное сопротивления рогового слоя кожи, Rкс и Cкс – то же для костей, Rм – сопротивление мягких тканей, окружающих череп, R к – поверхностное сопротивление кожи (Москаленко, 1977).

Поскольку в РЭГ для оценки сопротивления тканей применяют токи высокой частоты, размер электродов не имеет существенного значения, так как их поляризация практически отсутствует. Используют пластинчатые овальные или круглые электроды из различных материалов, надежно фиксируя их на голове (рис. 2.19). Информативность полученных показателей зависит от конкретных задач исследования (рис. 2.20).

Рис.44 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.19. Варианты расположения электродов для РЭГ на кожных покровах головы.

1 – бифронтальное, 2 – бимастоидальное, 3 – окулоокципитальное, 4 – фронтоокципитальное, 5 – фронтомастоидальное, 6 – окуломастоидальное отведения (Москаленко, 1977).

Рис.45 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.20. Схематическое изображение изменений кривой РЭГ. Сверху вниз: норма, окклюзия сосуда, артериовенозный шунт, компрессия мозга, начальная и далеко зашедшая форма атеросклероза сосудов мозга (Москаленко, 1977).

Электромиография

Электромиография (ЭМГ) – метод регистрации суммарных колебаний электрической активности, возникающей при сокращении мышц (рис. 2.21). Поверхностная ЭМГ суммарно отражает разряды двигательных единиц, вызывающих сокращение. Поскольку регистрация производится с поверхности кожи, разряды мышц, располагающихся на разной глубине от поверхности, ослабляются различным образом. В целом уровень электрической активности соответствует общей величине мышечного напряжения (Хэссет, 1981).

Рис.46 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.21. Примеры электромиограмм. 1 и 3 «необработанная» ЭМГ; 2 и 4 – интегрированная ЭМГ (Хэссет, 1981).

Полученные сигналы сначала подвергаются выпрямлению, затем интегрируются: производится вычисление площади, находящейся под графической кривой ЭМГ. Электромиограмма содержит множество высокочастотных компонентов, что затрудняет процесс регистрации с помощью обычных полиграфов, поэтому для повышения точности исследования используются осциллографы.

Требования к электромиографическим электродам аналогичны тем, которые применяют в электроэнцефалографии.

Электроокулография

Электроокулография (ЭОГ) – метод регистрации электрической активности, возникающей при движении глаз. Роговица глаза имеет положительный заряд относительно сетчатки, что создает постоянный потенциал, который называется корнеоретинальным потенциалом. При изменении положения глаза происходит переориентация этого потенциала (рис. 2.22), которая фиксируется прибором.

Рис.47 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2. 22. Физическая основа окулограммы. Глазное яблоко действует как миниатюрная батарея, при его повороте полюса этой батареи изменяют положение относительно электродов, помещенных около глаз. Регистрируются изменения электрического потенциала, по которому можно судить об угле поворота глаз (Хэссет, 1981).

При записи с помощью усилителя постоянного тока можно получить информацию об ориентации глаз, при использовании усилителя переменного тока – только запись движений глаз.

Перед записью производят калибровку, определяя диапазон возможных сдвигов. Для этого испытуемого просят смотреть вперед, вверх, вниз, в стороны. Линия на ЭОГ в тот момент, когда взгляд неподвижен и направлен вперед, принимается за нулевую. Применяются очень небольшие электроды, располагающиеся в точках, показанных на рис. 2.23. Кожу и электроды подготавливают так же, как при электроэнцефалографии.

Рис.48 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.23. Места расположения электродов для окулограммы.

Электроокулография наиболее эффективна в совокупности с другими методами. При оценке ЭЭГ, например, она позволяет вычленять артефакты, обусловленные движением глаз.

Кожно-гальваническая реакция

Электрическая активность кожи – кожно-гальваническая реакция (КГР) – определяется двумя способами. Первый, предложенный С. Фере (Fere) в 1888 г., представляет собой измерение кожного сопротивления. Второй – измерение разности потенциалов между двумя точками на поверхности кожи – связан с именем И. Р. Тарханова (1889).

Сопоставление КГР, полученных по методу Фере и по методу Тарханова, привело к выводу, что изменения разности кожных потенциалов и кожного сопротивления отражают одну и ту же рефлекторную реакцию, фиксируемую в различных физических условиях (Кожевников, 1955). Изменения сопротивления всегда представляются однофазной волной уменьшения исходного кожного сопротивления. Изменения кожных потенциалов могут выражаться в виде волн различной полярности, часто многофазных. Согласно Р. Эдельбергу (Edelberg, 1970), разность потенциалов кожи включает эпидермальный компонент, не связанный с активностью потовых желез, тогда как проводимость кожи его не имеет, то есть отражает состояние потовых желез.

При измерении кожного сопротивления с внешним источником тока, присоединенным отрицательным полюсом к ладони, латентный период изменения сопротивления оказывается на 0,4–0,9 сек больше, чем скрытый период изменений разности потенциалов. Динамические характеристики фазической КГР достоверно отражают быстропротекающие процессы в ЦНС. Характер и форма тонического компонента являются индивидуальными показателями и не обнаруживают четкой зависимости от типа деятельности.

В возникновении КГР участвуют два главных механизма: периферический (свойства самой кожи, в том числе активность потовых желез) (Biro, 1983) и передаточный, связанный с активирующим и пусковым действием центральных структур (Lader, Motagu, 1962). Различают спонтанную КГР, развивающуюся при отсутствии внешнего воздействия, и вызванную – отражающую реакцию организма на внешний стимул.

Для регистрации КГР используют неполяризующиеся электроды, накладываемые обычно на ладонную и тыльную поверхность рук, кончики пальцев, иногда – на лоб или ступни ног.

Наиболее эффективна КГР в сочетании с другими методами при оценке эмоционального состояния испытуемых (рис. 2.24).

Рис.49 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2. 24. Изменение физиологических функций испытуемого при наступлении дремоты (а) и при пробуждении (б).

1, 2 – ЭЭГ, отведения 01 и 02 (левое и правое полушария соответственно); 3, 4 – КГР левой и правой руки; 5 – сейсмоактограмма (сигналы появляются при постукивании испытуемым по датчику пальцем); 6 – ЭКГ (Леутин, Николаева, 1989).

Все описанные методы получения психофизиологической информации имеют свои достоинства и недостатки. Одновременное использование сразу нескольких из них в одной экспериментальной ситуации позволяет получить более надежные результаты. Дополнительное использование психологических тестов также повышает эффективность применения физиологических методов.

Сверхслабые воздействия постоянными микротоками

Кроме фиксации изменений электрических процессов в мозге, многие исследователи пытались оценить последствия воздействия внешнего электрического тока на состояние человека. Наиболее известными стали результаты, полученные У. Пенфилдом (Penfild, Rusmussen, 1950), который раздражал участки мозга непосредственно перед тем, как их удалял хирург. Эти данные описаны в главе 15. Они положили начало целому направлению в исследовании функций мозга – картированию мозга. Это направление привело к созданию «карт», позволяющими оценить, за какие функции отвечает участок мозга под электродом, через который производится подача слабого электрического раздражения.

Дальнейшее развитие этого направления связано с использованием постоянных микротоков (то есть очень слабых токов величиной 10-4 – 10-1 мкА), которыми воздействовали через долгосрочные интрацеребральные (введенные в глубокие структуры мозга) электроды. Как и в первом случае, авторы работали на больных людях, в частности пациентах с фантомными болями (Бехтерева и др, 1977). Фантомными являются боли, которые человек испытывает после операций по удалению органа или части тела. Например, после удаления руки или ее части, человек постоянно чувствует боль в пальцах несуществующей руки.

Однако через эти же электроды можно было не только воздействовать на мозг, но и регистрировать его собственную сверхмедленную активность (токи крайне низких частот, близкие к постоянным), которая оказалось крайне информативным показателем для описания активности глубоких структур мозга (Илюхина, 1977).

Позднее исследователи стали использовать параметры тока, близкие к параметрам природных сверхмедленных потенциалов головного мозга для воздействия через поверхностные электроды, расположенные на разных участках мозга. Это явление стало называться транскраниальной микрополяризацией. Оказалось, что подобные воздействия крайне эффективны при лечении ряда заболеваний. Анализ лечебного эффекта таких токов позволяет оценить процессы, ведущие к лечебному эффекту. Изменение ионного состава ткани, расположенной под электродом при воздействии тока, ведет к каскаду физиологических эффектов, среди которых активация системы регуляции локального кровотока и повышение содержания биологически активных веществ и вазоактивных медиаторов. Это ведет к изменению активности вегетативных центров и высших отделов центральной нервной системы. Изучение процессов, лежащих в основе транскраниальной микрополяризации, позволит понять специфику взаимодействия различных структур мозга (Илюхина и др., 2006).

Вербальная ассоциация

Ассоциация – это некая связь между психическими явлениями, возникающая при определенных условиях. О ней говорят в тех случаях, когда одно событие влечет за собой другое. Термин «ассоциация» был предложен в 1690 г. Дж. Локком (Мартинович, 1997). Поскольку явления и объекты окружающего мира связаны в нашем сознании, то подобные связи существуют и между словами, их обозначающими. Каждое слово не просто существует в сознании, но оно включено в речевую сеть, в которой сотнями нитей оно тянется к другим словам языка. В этой ассоциативно-вербальной сети представлена речевая готовность носителя языка (Караулов, 1999).

Из-за ассоциативной связи слова всегда являются членами речевых гнезд или систем гнезд (Крушевский, 1883). Это обусловлено тем, что они классифицируются в нашем сознании так же, как и обозначаемые ими вещи. Слова походят друг на друга тем или иным своим аспектом, что позволяет нам группировать их. Вербальная сеть является оперативным пространством, в рамках которого происходит речевая активность. С этой позиции, вербальная сеть – это стабильно поддерживаемая мозгом обширная структура, фиксирующая значение каждого слова усвоенного языка и множественные межсловесные связи разной степени «близости» или «удаленности» (Ушакова, 2003; 2004).

Для вербальной ассоциации стимулом не обязательно должно быть слово. Им может быть и часть слова, и структуры, большие, чем слово (например, словосочетание). Подобные связи Ю. Н. Караулов (1999) назвал построением «ассоциативной грамматики». Предполагается, что в психике человека не записана отдельно лексика и грамматика в виде правил лексической и грамматической сочетаемости. Вся речевая система функционирует одновременно. В этом случае частота определенных ассоциативных пар демонстрирует актуализацию владения не только семантикой, но и грамматикой.

Вербальная ассоциация может отражать как реальную связь между явлениями или объектами, так и связь, возникшую в результате субъективного опыта человека. Этот опыт может быть как сугубо личным, так и опытом окружения, с которым связан человек. Например, в нашей стране белый цвет ассоциируется с торжественными событиями, тогда как в Японии он считается цветом траура (Фрумкина, 2001).

Таким образом, характер ассоциаций определяется целым комплексом факторов: индивидуальным опытом испытуемых, особенностью культуры, конкретной политической структурой, в которой они проживают, состоянием, в котором находятся, возрастом.

Индивидуальный опыт человека проявляется в оригинальности или типичности создаваемых ассоциаций. Это обусловлено как генетическими его особенностями, формирующими определенный психологический тип, так и богатством или бедностью на события обстоятельств его жизни.

Особенность культуры, в которой развивается человек, обнаруживается в характере формирующихся ассоциативных гнезд. Р. М. Фрумкина (2001) провела сравнительный анализ ассоциаций на сему «Сыр», создаваемых испытуемыми, проживающими в разных странах Европы. Для русскоязычных наиболее частыми оказались ассоциации: голландский, вкусный, желтый, масло. Для болгар типичны ассоциации: овца, белый, соленый. Для англоязычных испытуемых: крекеры, мыши, хлеб; для немецкоязычных: масло, хлеб, молоко. Подобный культурный аспект представлен в ассоциативных словарях, отражающих культурную «норму», то есть типичные языковые связи для данного народа.

Конкретные общественно-политические ситуации могут изменить эту норму. Так у молодых людей, проживающих в России и Польше, отмечаются существенные различия в ассоциациях на наиболее одиозные слова из набора «Политика», «Бог», «Добро», «Семья». Анализ ассоциаций выявляет больше негативизма у польских студентов к словам, относящимся к сфере «Политика». В ответах на слова, связанные с темой «Мораль», у польских респондентов прослеживается связь между «вечными» и религиозными ценностями, что не наблюдается у русских (Фрумкина, 2001).

Но и особенности времени, в котором живет человек, отражаются на отношении человека к слову и ассоциации на него. Например, в конце 80-х годов, когда проводилось наше ассоциативное исследование, одним из наиболее эмоциональных было слово «джинсы», тогда как слово «игла» рассматривалось группой экспертов как нейтральное. Более того, испытуемые реагировали на него также, как на нейтральное. Это вполне объяснимое явление. Качественные джинсы в то время можно было приобрести с большим трудом, а наркомания не затрагивала широкие слои населения. Возможно, что исследование, проведенное в настоящее время (начало 21 века), выявит существенные изменения в выборе слов в качестве эмоциональных, и слово «джинсы» будет оцениваться как нейтральное, а «игла» – как эмоциональное (Николаева, 2005).

Состояние, в котором находится испытуемый (здоровье, болезнь, стресс, и т. д.), также меняет качество ассоциаций. Например, человек в остром стрессе порождает большое число инвертированных ассоциаций, то есть ассоциаций, имеющих знак эмоциональной окраски, противоположный слову-стимулу (дружба – вражда, поцелуй – укус и т. д.) (Леутин, Николаева, 1988).

На качество ассоциативного процесса влияет возраст. Показано, что у детей преобладают синтагматические ассоциации (лампа – горит, стул – сижу и т. д.), что, по-видимому, связано с воспроизведением ими фрагментов запомненных фраз. В дальнейшем все чаще встречаются парадигматические ассоциации (лампа – люстра; стол – стул), что обусловлено, возможно, освоением ими понятийной структуры языка (Ушакова, 2004).

Ассоциативный эксперимент как инструмент анализа психических явлений

Впервые ассоциативный эксперимент был предложен в 1879 г. Ф. Гальтоном, родственником Ч. Дарвина. Он проявил себя новатором в различных областях человеческих знаний. Ф. Гальтон ввел дактилоскопию в Скотленд-Ярде, оценил важность близнецового метода в генетическом анализе, предложил новые статистические методы при анализе биологических данных, создал первый тест для оценки интеллекта. Как и большинство исследователей в области психологии того времени, многие экспериментальные исследования он проводил на себе.

Предложенный Ф. Гальтоном вариант ассоциативного метода выглядел следующим образом. Он выбрал 75 английских слов, написал каждое на отдельной карточке и отложил на несколько дней. Затем одной рукой брал карточку, а другой с помощью хронометра отмечал время, когда прочитанное слово вызывало у него две различные мысли. Ф. Гальтон отказался опубликовать результаты эксперимента, сославшись на то, что «они обнажают сущность человеческой мысли с такой удивительной отчетливостью и открывают анатомию мышления с такой живостью и достоверностью, которые вряд ли удастся сохранить, если опубликовать их и сделать достоянием мира» (Miller, 1951).

Систематически метод свободных ассоциаций для оценки состояния человека стал применяться З. Фрейдом (1991). В его трактовке метод выглядел иначе: больной, лежа на кушетке, в течение часа произносил слова, фразы, высказывал мысли на темы, которые всплывали в его сознании.

Иногда такого рода ассоциирование было связано со сновидениями, поразившими больного в детстве и часто повторяющимися в зрелом возрасте. З. Фрейд показал, что возникновение длительных пауз или трудности в процессе ассоциирования свидетельствуют, как правило, о приближении к области неосознаваемого самим испытуемым психического конфликта.

Дальнейший вклад в развитие ассоциативного метода внес К. Юнг (1936), существенно видоизменивший его и создавший собственно ассоциативный эксперимент. В это же время подобное исследование проводил Макс Вертгеймер (Wertheimer e. a., 1992), работы которого менее известны и оказали меньшее влияние на дальнейшее развитие психофизиологии.

К. Юнг использовал 400 различных слов, среди которых были 231 существительное, 69 прилагательных, 82 глагола, 18 предлогов и числительных. Особое внимание уделялось тому, чтобы все слова были известны больному, резко различались по смыслу и звучанию, не ограничивали его в подборе ассоциаций какой-либо одной областью. С помощью хронометра оценивался латентный период вербального ответа и качественные особенности ассоциирования. К. Юнг считал, что, невзирая на кажущуюся произвольность ассоциативного процесса, обследуемый невольно выдает то, что ошибочно считает наиболее скрытым.

К. Юнг подчеркивал, что при анализе ассоциирования исследуются сразу несколько процессов: восприятие, индивидуальные особенности его искажения, интрапсихические ассоциации, словесное оформление и двигательное проявление. Он обнаружил объективные критерии связи предъявляемого слова с комплексом, вытесненным в бессознательное. Этими критериями являются: удлинение латентного периода вербального ответа, ошибки, персеверации, стереотипии, оговорки, цитаты и т. д. Однако К. Юнг субъективно интерпретировал полученные результаты, и его разветвленная классификация ассоциаций представляет собой компиляцию нескольких принципов анализа, переход от одного к другому в которой чрезвычайно субъективен, а сами методы исходят из разных предпосылок (грамматических, психологических, медицинских или физиологических).

В то же время К. Юнг впервые максимально объективизировал процедуру исследования. Результатом этой работы, кроме критериев определения области бессознательно существующего конфликта, было обнаружение факта, что ассоциации часто представляют собой не ближайшее всплывшее содержание, а следствие целого ряда ассоциативных процессов. Он обратил внимание и на трудность поиска здоровых испытуемых для обследования, особенно среди образованных людей.

Нерешенность вопроса качественного анализа ассоциаций сохранилась до сих пор.

Дж. Диз (Dees, 1965), анализируя принципы общепринятых классификаций ассоциаций, отмечал, что они «отчасти психологические, отчасти логические, отчасти лингвистические и отчасти философские (эпистемологические)». Эти классификации не имеют никакого отношения к ассоциативному процессу и привязываются к нему достаточно произвольно. При этом делается попытка втиснуть ассоциации в те схемы отношений, которые обнаружены в грамматике, разного рода словарях, психодинамических теориях, а также различных представлениях об организации физического мира.

Одну из первых классификаций предложил Д. Юм (1965), который выделил 3 типа ассоциаций: по сходству, по смежности во времени и события, связанные причинно-следственными отношениями. Наиболее типичной является классификация, предложенная Дж. Миллером (Miller, 1951), в которой ассоциации группируются по контрасту, сходству, подчинению, соподчинению, обобщению, ассонансу, по связи «часть – целое» и возможности рассматривать ее как дополнение, по отношению к эгоцентризму, связи на основе одного корня, возможности быть представленным как проекция. Д. Слобин и Дж. Грин (1976) отмечают, что «эти классификации очень остроумны, но не совсем ясно, к каким выводам они могут привести, как определяются их основы и каковы их пределы».

Последующие исследования подтвердили взаимосвязь словесных ассоциаций и основных механизмов речевой деятельности. Речь человека отражает в себе, с одной стороны, закономерности определенной языковой системы, с другой – психологические особенности говорящего, и оба эти аспекта находят выражение в структуре словесных ассоциаций (Галагудзе, 1980).

Ассоциативный эксперимент широко применялся для анализа высшей нервной деятельности здорового и больного мозга взрослого человека и ребенка (Иванов-Смоленский, 1963). При этом в расчет принимались латентный (скрытый) период вербального ответа и его средняя вариация, тип и характер ассоциации в соответствии с той или иной классификацией, комплексные реакции, т. е. вполне определенные реакции, вызванные аффектогенными раздражителями.

А. Р. Лурия (1928) предложил свою модификацию ассоциативного эксперимента, названную им сопряженной моторной методикой. Испытуемому предлагается слово-стимул, в ответ на которое он должен произнести первое пришедшее в голову слово-ассоциацию и одновременно нажать на пневматическую грушу. Эта процедура позволяет, кроме латентного периода вербального ответа, измерить скрытый период и исследовать форму сопряженной двигательной реакции, зафиксированную самописцем. Оказалось, что в том случае, когда испытуемому предъявляются слова, не имеющие для него эмоциональной значимости, латентный период вербального ответа и сопряженной моторной реакции совпадают, а сама моторная реакция имеет простую форму.

При предъявлении аффектогенных слов латентный период ассоциации существенно изменяется, поскольку испытуемый пытается скрыть первую возникшую ассоциацию, которую он по тем или иным причинам не может сообщить экспериментатору. Однако с невысказанным ответом связан легкий нажим на грушу, и на миограмме появляется излом или характерное дрожание. Это рассогласование между вербальным и двигательным компонентами ответа отражает своеобразный напряженный характер ассоциативного процесса.

Проведение ассоциативного эксперимента нередко сопровождается регистрацией вегетативных реакций, в частности КГР (Леутин, Николаева, 1988; Николаева и др., 1990) и энцефалограммы (Воронин и др., 1976) (рис. 2.25).

Рис.50 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 2.25. Изменение амплитуды КГР у двух испытуемых (а) и (б) при порождении ассоциации в ответ на предъявление слов различной эмоциональной значимости:

1 – «буква», 2 – «любовь», 3 – «лента», 4 – «дурак».

Использование ассоциативного теста для анализа реакций спортсменов на нейтральные слова, слова, связанные с успехом/неуспехом, обнаружило следующее: в состоянии психического покоя латентный период ассоциаций на эмоциогенные слова увеличивается на 40 %, а у отдельных, эмоционально неустойчивых спортсменов – на 200 %. Перед стартом у психологически устойчивых спортсменов латентный период меняется мало, незначительно превышая исходные данные. Однако у спортсменов, испытывающих высокий уровень эмоционального напряжения, увеличение латентного периода на слова, связанные с успехом/неуспехом, достигает 300 % (Дашкевич, 1968).

Таким образом, ассоциативный эксперимент может быть эффективным инструментом как для анализа индивидуальной эмоциональной сферы человека, так и для оценки изменения этого состояния под влиянием каких-либо воздействий.

Словарь

Артефакты

ненужные в данный момент для исследователя записи электрической активности, являющиеся помехами.

Вызванный потенциал

усредненная запись волновой активности мозга при повторных предъявлениях одного и того же стимула.

Кожно-гальвафническая реакция – запись электрической активности кожи.

Компьютерная томография

современный метод, позволяющий визуализировать особенности строения мозга человека с помощью компьютера и рентгеновской установки.

Метод ядерно-магнитного резонанса —

позволяет визуализировать строение мозга, как и при компьютерной томографии, но он не связан с использованием радиоактивных лучей. При этом методе вокруг головы испытуемого создается очень сильное магнитное поле, которое воздействует на ядра атомов водорода, имеющих внутреннее вращение. Выключение поля ведет к тому, что атомы утрачивают единое направление осей вращения и вследствие этого начинают излучать энергию. Эту энергию фиксирует датчик, а информация передается на компьютер.

Позитронно-эмиссионная томография (ПЭТ)

метод, позволяющий оценить метаболическую активность в различных участках мозга.

Реоэнцефалография (РЭГ)

метод исследования кровообращения головного мозга человека, основанный на регистрации изменений пассивных электрических характеристик между электродами, фиксированными на кожных покровах головы.

Томография

метод визуализации структур мозга, основанный на получении срезов мозга с помощью специальных техник.

Электроэнцефалограмма (ЭЭГ)

запись электрической активности головного мозга.

Электромиография (ЭМГ)

метод регистрации суммарных колебаний электрической активности, возникающей при сокращении мышц.

Электроокулография (ЭОГ)

метод регистрации электрической активности, возникающей при движении глаз.

Контрольные вопросы

1. Сформулируйте принцип адекватности.

2. Различие в методах, используемых в психофизиологии и физиологической психологии.

3. Электроэнцефалограмма и методы ее регистрации.

4. Типы волн на ЭЭГ.

5. Импульсная активность нервных клеток и ее регистрация.

6. Что такое вызванные потенциалы мозга и потенциалы, связанные событиями?

7. Томографические методы исследования мозга.

8. Реоэнцефалография.

9. Электромиограмма и методы ее регистрации.

10. Электроокулография.

11. Электрическая активность кожи и ее регистрация.

12. Ассоциативный эксперимент и сфера его применения.

Глава 3

Психофизиологические механизмы адаптивного поведения

Рис.10 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Матчинский горный узел. Фото В. П. Леутина

Определение адаптации

Термин «адаптация» применяется к широкому кругу явлений. С позиции теории эволюции (Дарвин, 1953) адаптация – это механизм, обеспечивающий освоение растениями и животными новых мест обитания и выживание в них в процессе конкурентной борьбы. Для большинства физиологов адаптации – это частное явление приспособления к конкретным условиям существования (Лебединский, 1956). Психологи используют его для определения интеллекта (см. гл. 14). В этом случае под адаптацией понимается приспособление к постоянно меняющимся социальным и психологическим условиям с применением разнообразных знаний и умений (Дружинин, 1999).

В этой главе под адаптацией мы будем понимать процесс приспособления к меняющимся природным факторам среды. Многообразие природных факторов и умение человека жить в них свидетельствуют о наличии как специфических, так и общих механизмов адаптации. Реальность существования универсальных механизмов вытекает из широчайших возможностей приспосабливаться к условиям, с которыми не встречался ранее ни данный организм, ни даже представители вида в целом (рис. 3.1). Мы будем разбирать лишь те механизмы, которые относятся к психофизиологии, то есть отражают взаимодействие психологических и физиологических изменений.

Суть любой адаптирующейся системы заключается в способности корректировать свои реакции согласно изменениям воздействующего стимула на основе имеющегося опыта, а также накопление и хранение вновь поступающей информации. Именно поэтому приспособление возможно лишь при условии сохранности и четкой работы механизмов памяти. В филогенетическом аспекте высшей ступенью адаптации животных является их способность к обучению (Ушаков, 1978).

Рис.11 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 3.1. Оценка клино- и ортостатической проб в полевых условиях

В привычных условиях в поведении преобладают стереотипные действия, которые сокращают время восприятия и реагирования человека. Однако при попадании в новые условия, при внезапном изменении среды обитания необходима существенная коррекция поведения человека.

Проблема адаптации в настоящее время приобрела особое значение, поскольку приспосабливаться приходится не только к изменяющимся условиям природной среды, но и к последствиям антропогенной активности, а также к социальным условиям, которые могут не совпадать с действием природных факторов. Универсальным ответом организма на значительные изменения является общий адаптационный синдром.

Стресс

Понятие «стресс» из научной литературы прочно перешло в бытовую речь. Говорят о нарастании стресса в развитых странах, о его вредных последствиях для здоровья людей и т. д. Обыденная сфера применения существенно упрощает это понятие. Детальное исследование механизмов стресса продолжает оставаться весьма актуальным.

Термин «стресс» (напряжение, англ.) в 1927 г. ввел У. Кэннон (Cannon, 1927) для обозначения физиологических реакций, возникающих в организме человека и животных под воздействием аверсивного, несущего угрозу, стимула. По Кэннону, отвечая на возникшую опасность, организм использует две стратегии: борьбу или бегство (flight or fight). Обе стратегии связаны с симпатической активацией, которая ведет к возрастанию частоты сердечных сокращений, артериального давления, дыхания.

В настоящее время под стрессом понимается состояние, вызванное чрезмерно сильным воздействием на организм, которое принято называть стрессором. Установлено, что многие повреждающие эффекты сверхсильного воздействия обусловлены не самим стрессором, а реакцией человека на него. Более того, выражение отрицательных эмоций неблагоприятно сказывается не только на том, кто их испытывает, но и на тех, с кем он общается (рис. 3.2.).

Рис.12 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 3.2. И. Е. Репин. Иван Грозный и сын его Иван (деталь).

Общий адаптационный синдром

В 1925 г., будучи студентом, Г. Селье обратил внимание на то, что многие болезни начинаются с одних и тех же симптомов: недомогания, слабости, головной боли. Окончив университет, он подробно исследовал этот феномен. Он подвергал экспериментальных животных разным сверхсильным воздействиям: понижал температуру тела, вводил подкожно токсические вещества (например, формалин), заставлял быстро и долго бежать, вызывал боль и кровопотерю. Затем проводил вскрытие и искал изменения внутренних органов, сопровождавшие все эти воздействия.

Эти исследования привели в 1936 г. к открытию синдрома, вызываемого разными повреждающими агентами, или общего адаптационного синдрома (Селье, 1960; 1972). Он был назван общим, поскольку вызывался обстоятельствами, приводящими к изменению в организме в целом; адаптационным – так как, с точки зрения Г. Селье, имел приспособительное значение, мобилизуя ресурсы организма в тяжелых условиях; и синдромом, «потому, что его отдельные проявления координированы и отчасти взаимозависимы» (Селье, 1960, с.60).

Общий адаптационный синдром включает в себя так называемую триаду Селье:

1. Инволюцию (уменьшение) тимуса (вилочковой железы), селезенки, лимфатических узлов, жировой ткани.

2. Изъязвление желудка и желудочно-кишечного тракта.

3. Исчезновение гранул липидов в надпочечниках и увеличение коркового слоя надпочечников.

Позднее был открыт гормон, точнее, семейство гормонов кортикостероидов, введение которых также вызывало физиологические явления, соответствующие триаде Селье. Наиболее известный гормон этого семейства – кортизол. Именно кортикостероиды исчезают из гранул в надпочечниках, а разрастание коркового слоя надпочечников связано с увеличенной их секрецией под воздействием сверхсильного раздражителя. Два первых пункта триады Селье обеспечиваются подавлением активности иммунной системы и усилением выделения соляной кислоты в желудке большими концентрациями кортизола.

Стадии развития стресса

Селье выделил три стадии общего адаптационного синдрома, последовательно разворачивающиеся во времени после появления стрессора.

Первая стадия – реакция тревоги, или аларм-реакция (alarm – тревога, англ.) – обнаруживается в мобилизации защитных сил организма, в результате чего происходит процесс перестройки вегетативной и гормональной регуляции. В кровь выбрасывается большое количество кортикостероидов, усиливается гемоконцентрация (сгущение крови), в тканях преобладают катаболические процессы (Угрюмов, 1999).

Во время аларм-реакции происходит активация симпатического отдела вегетативной нервной системы, в кровяное русло поступает большое количество адреналина, концентрация которого может увеличиться в 300 раз. Адреналин, в свою очередь, усиливает процесс превращения гликогена в глюкозу. Известно, что мозг не имеет запасов глюкозы, в отличие от других органов, например, мышц и печени. Поэтому при стрессе, когда резко возрастают потребности мозга в глюкозе, адреналин способствует поддержанию гомеостаза мозга, активируя ее синтез из гликогена печени.

Стрессовую реакцию обеспечивают кортикостероиды. Стрессор, воздействуя на организм, вызывает активацию симпатического отдела гипоталамуса. Следствием этого является возбуждение чревного нерва и через него – мозгового слоя надпочечников, что и приводит к выбросу адреналина и норадреналина. Далее они с током крови направляются в особую область гипоталамуса, где находятся нейроны, продуцирующие адренокорт икотропинрелизинг-фактор, или адренокортиколиберин.

Кровь несет это вещество в переднюю долю гипофиза, где оно способствует выделению адренокортикотропного гормона (АКТГ). Попадая с током крови в корковый слой надпочечников, гормон активирует выход из гранул кортикостероидов, прежде всего кортизола. Гипофиз также секретирует бета-эндорфин, который усиливает выброс кортикостероидов в кровь и параллельно повышает болевой порог, что снижает чувствительность человека к боли при стрессе (рис. 3.3).

Рис.51 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 3.3. Контроль секреции глюкокоротикоидов (Carl son, 1992).

Практически все клетки организма имеют рецепторы, чувствительные к кортизолу. Высокие концентрации кортизола приводят к торможению воспалительных реакций (снижению иммунитета), распаду белков в периферических тканях и их синтезу в печени, повышению концентрации сахара в крови, экскреции (выделению) кальция и фосфата почками. Он блокирует выброс тестостерона в кровь, что приводит к снижению сексуального влечения у мужчин.

Поскольку угрожающий стимул требует значительной активности мозга, вегетативные и эндокринные компоненты стресса по сути своей катаболические: они обеспечивают мобилизацию энергетики организма. Адреналин меняет метаболизм глюкозы, ускоряя процесс разложения гликогена, запасенного в мышцах, до глюкозы. Он способствует также превращению белка в глюкозу, делает доступным жир для переработки, увеличивает кровоток к мышцам, стимулирует поведенческий ответ, по-видимому, опосредованно через мозг.

Секреция кортизола не только помогает животному и человеку приспособиться к изменившимся условиям, но и выживать. Людям, лишенным надпочечников, для поддержания жизни необходимо регулярно получать дозы кортизола, без которого смертельный исход неизбежен (Tyrell, Baxter, 1981).

Кровь в норме содержит около 80–120 мг глюкозы, попадающей туда из кишечника. На ее пути барьером встает печень, стимулирующая образование гликогена из избыточного количества глюкозы. Этот процесс происходит под контролем инсулина, который не только способствует образованию гликогена, но и регулирует проницаемость клеток для глюкозы. Он также усиливает синтез жиров и белков. Во время аларм-реакции количество инсулина уменьшается, поскольку инсулин и кортизол находятся в реципрокных отношениях. Происходит увеличение уровня глюкозы, но не только за счет распада гликогена, а также благодаря гидролизу жиров и белков. На стадии истощения отмечается уменьшение количества глюкозы в крови, что может привести к нарушению питания мозга.

Катехоламины, прежде всего адреналин, оказывают влияние на обмен инсулина. Воздействуя на бета-адренорецепторы островкового аппарата поджелудочной железы, они усиливают продукцию инсулина, а вступая в реакцию с альфа-адренорецепторами, блокируют выделение инсулина в кровь. Взаимоотношения трех основных гормонов на протяжении разных стадий стресса показаны на рисунке 3.4. Длительное воздействие стресса может привести к развитию диабета напряжения.

Рис.52 Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Рис. 3.4. Динамика взаимоотношений между содержанием в крови катехоламинов (1), глюкокортикоидов (2) и инсулина (3) в различные фазы стресса по Селье. А – изменение резистентности организма; Б – изменение концентрации адаптивных гормонов (Панин, 1983).

Патогенным следствием стрессовой реакции является увеличение числа свободных радикалов – высокоактивных соединений, накапливающихся при разобщении механизмов клеточного дыхания и окислительного фосфорилирования в митохондрии клетки при избытке гормонов стресса. Свободные радикалы могут взаимодействовать со всеми находящимися в клетке веществами (в том числе ферментами, липидами мембраны, ДНК), повреждая их и нарушая нормальное функционирование. Они же могут повреждать сосудистую стенку, что в дальнейшем повышает вероятность развития сердечно-сосудистых заболеваний (Климов, Никульчева, 1995).

Вторая стадия стресса называется стадией резистентности. Она наступает, если действие стрессора не превышает компенсаторных возможностей организма. В этом случае отмечается повышение сопротивляемости организма внешнему экстремальному воздействию. В коре надпочечников вновь появляются секреторные гранулы, обусловленные выработкой кортикостероидов, усиливается гемодилюция (разжижение крови), в тканях преобладают анаболические процессы.

После длительного действия сильного раздражителя компенсаторные возможности центральных и периферических механизмов стрессовой реакции могут исчерпаться, и организм перейдет в последнюю, третью стадию – стадию истощения, в которой вновь возникают элементы стадии тревоги, однако происходящие изменения носят необратимый характер. Обнаруживается истощение механизмов, обеспечивающих секрецию кортизола. Если стрессор чрезмерен и продолжает действовать, то вслед за этой стадией возможна гибель организма (Панин, 1983). Восстановительные процессы после стресса обусловлены, прежде всего, действием гормона роста.

По качеству влияния раздражителя на организм выделяют физический стресс, связанный с воздействием сверхсильного физического раздражителя, например, холода, и эмоциональный стресс, вызванный эмоциональной реакцией человека на внешние стимулы. Очевидно, что в реальной жизни невозможно выделение чисто физического или чисто эмоционального стресса, поскольку любой физический раздражитель обязательно будет сопровождаться эмоциональной реакцией, хотя бы вследствие значительности своего воздействия. Такое деление представляет лишь теоретический интерес, тем не менее оно удобно с практической точки зрения. Например, человек, выходящий в одних трусах на снег и выливающий на себя ведро холодной воды, подвергается воздействию физического стресса, однако эти действия, безусловно, будут сопровождаться теми или иными эмоциональными реакциями, например, положительными эмоциями у закаленного человека или негативными у того, кто подвергается этой процедуре насильно.

Последствия от эмоционального стресса могут быть не менее, а иногда и более существенными, чем от физического стресса. В 60-х годах 20 столетия ученый Ален Бомбар (1965) заинтересовался удивительным феноменом: после кораблекрушений люди, спасшиеся на плотах, тем не менее погибали, когда на 2-й – 3-й дни приходила помощь. Было непонятно, от чего гибнут люди, поскольку от жажды в среднем погибают через 7 дней, а без еды можно продержаться более трех недель. Ален Бомбар предпринял беспрецедентный эксперимент: на небольшом плоту без продуктов в одиночестве он пересек Атлантический океан. Почти три месяца длилась его борьба со стихией. Его подобрали у берегов Америки обессиленного, но живого. Главнейшим выводом этого предприятия были последние слова его книги: «Жертвы кораблекрушений! Вас убило не море, вас убили не голод и жажда, вас убил страх». Многочисленные исследования более позднего времени подтвердили эту мысль. Эмоциональные переживания в специфических условиях, например, в отсутствии движения, истощают организм, что приводит к гибели людей примерно на третьи сутки.

Продолжить чтение