Читать онлайн Технология кровельных и гидроизоляционных материалов бесплатно

Технология кровельных и гидроизоляционных материалов

Введение

Гидроизоляционными называют строительные материалы, которые обладают водонепроницаемостью и удовлетворяют другим техническим требованиям – по прочности, деформативности, теплостойкости и т. д.

Необходимость защиты строительных конструкций от воздействия воды в условиях эксплуатации обусловлена ее высоким агрессивным воздействием, как в чистом виде, так и в виде растворов солей, щелочей либо кислот. Под ее воздействием наблюдается снижение прочностных характеристик материалов, развитие коррозионных процессов в бетонах и металлах, загнивание древесины, обрушение штукатурки.

Гидроизоляционные материалы используют для наружной и внутренней защиты подземных сооружений (котлованов, фундаментов, труб под насыпями, коллекторов, туннелей, сводов траншей) от воздействия грунтовых вод; для изоляции водохранилищ, бассейнов, водоемов; для защиты мостов (опоры, проезжая часть);

для защиты междуэтажных перекрытий в производственных помещениях; при устройстве плоской и малоскатной кровель; для заделки стыков в крупнопанельном домостроении и при сооружении трубопроводов и пр.

Гидроизоляционные материалы при эксплуатации подвержены различным воздействиям: температурным, атмосферным (переменная температура, ультрафиолет, кислород, осадки); химически активных реагентов.

Несмотря на значительную абсолютную стоимость гидроизоляции (материалы, работы по нанесению гидроизоляционного покрытия), затраты на ее проведение значительно ниже в сравнении со стоимостью последующих ремонтновосстановительных работ при ее отсутствии.

Использование гидроизоляционных материалов отмечалось уже в глубокой древности (от 4,5 до 5 тыс. лет тому назад). Использовали битум и асфальт (смесь битума с минеральным порошком). В настоящее время наряду с широким использованием битума отмечается использование гидроизоляционных материалов и изделий как на его основе, так и на основе дегтей, полимеров, минеральных веществ.

Герметизирующие материалы используют для герметизации стыков между конструкционными элементами. Особенно широко герметизирующие материалы используют в крупнопанельном строительстве зданий для заделки стыков между панелями. Использование для этой цели цементных растворов неэффективно, так как при твердении они уменьшаются в размере и не обеспечивают надежной герметизации.

Кровельные материалы используют при сооружении кровель жилых, общественных и промышленных зданий. Многообразие типов кровель обусловливает широкий спектр кровельных материалов – от рулонных до штучных.

В данном пособии рассматриваются различные виды гидроизоляционных, герметизирующих и кровельных материалов, их свойства и технология производства. Поскольку свойства материалов зависят не только от состава компонентов, используемых при их изготовлении, но в значительной степени и от технологии, то в пособии значительное внимание уделяется именно вопросам технологии, конструкции используемого оборудования и особенностям его эксплуатации.

Пособие предназначено для студентов, изучающих технологию кровельных и гидроизоляционных материалов, а также будет полезно для лиц, производящих строительно-монтажные работы с использованием этих материалов.

1 Классификация гидроизоляционных материалов

Классификация гидроизоляционных материалов осуществляется по ряду признаков [6].

По функциональному назначению в гидроизолирующем слое различают следующие гидроизоляционные материалы:

– грунтовочные;

– подмазочные;

– шпаклевочные;

– изоляционные;

– покровные.

Структура гидроизоляционного покрытия приведена на рисунке 1.

Рис.0 Технология кровельных и гидроизоляционных материалов

1 – покровный слой; 2 – слой изоляционного материала; 3 – шпа клевка; 4 – грунтовка; 5 – подмазка или затирка; 6 – основание

Рисунок 1 – Гидроизоляционное покрытие

Грунтовочные – материалы, наносимые первым слоем на обрабатываемую поверхность с целью заполнения пор и дефектов, для повышения сцепления последующего слоя с основанием.

Подмазочные – предназначены для выравнивания углублений и других местных дефектов на поверхности конструкции.

Шпаклевочные – используют для окончательного выравнивая поверхности перед нанесением на нее изолирующего слоя.

Изоляционные – обеспечивают изоляцию конструкции от контакта с пароводяной средой.

Покровные – наносят для защиты основной гидроизоляции от воздействия внешней среды или придания наружной поверхности дополнительной гидрофобности, глянцевитости или зеркального блеска.

По физическому состоянию и внешнему виду в период использования материала различают:

– жидкие;

– пластичновязкие;

– упруговязкие;

– твердые.

Жидкие и пластичновязкие материалы характеризуются отсутствием определенной формы их массы; представляют собой эмульсии, пасты, растворы, мастики.

Упруговязкие и твердые характеризуются вполне определенной формой – полотно, пленка, плита и т.п.

По применяемому сырью:

– органические;

– неорганические;

– смешанные (комбинированные).

По назначению (производственному):

– пропиточные;

– иньекционные;

– обмазочные;

– оклеечные;

– уплотняющие;

– монтажные;

– насыпные.

Наиболее полной является комбинированная классификация, приведенная на рисунке 2

Рис.1 Технология кровельных и гидроизоляционных материалов

Рисунок 2 – Комбинированная классификация гидроизоляционных материалов

2 Структура и свойства гидроизоляционных материалов

2.1 Структура гидроизоляционных материалов

Структура (внутреннее строение) физических тел отражает определенный характер связей и порядок расположения частиц, из которых образованы тела.

У ГИМ (гидроизоляционных материалов) структура характеризуется химическими и физико-химическими связями между контактируемыми частицами разной степени дисперсности.

Структура может быть однородной и смешанной. Однородные – кристаллизационные, коагуляционные и конденсационные структуры. Твердые вещества, не обладающие кристаллизационной структурой, являются аморфными.

Кристаллизационные – структуры, сформировавшиеся путем выкристаллизовывания твердой фазы и последующего срастания кристаллов в прочный моноили поликристаллический агрегат.

Для кристаллических структур характерно упорядоченное строение кристаллической решетки на всем ее протяжении (дальний порядок). Каждому типу связи соответствует свой тип кристаллической решетки: ионной, молекулярной, атомной, с водородными связями.

Реальные кристаллы существенно отличаются по строению от идеальных кристаллов вследствие дефектности кристаллической решетки (вакансии, межузлия, дислокации, примеси и т.п.), что влияет на их свойства.

Коагуляционные – структуры, в образовании которых участвуют сравнительно слабые силы молекулярного взаимодействия между частицами – ван–дер– ваальсовые силы сцепления, действующие через прослойки жидкой фазы. Ван-дерваальсовые силы появляются между молекулами с насыщенными связями (инертные газы, H2, N2, CH4). Силы взаимодействия между ними крайне малы: теплота сублимации Cl2 около 5 ккал/моль. В то время как энергия связи Cl-Cl равна 57 ккал/моль.

Среда образует в структуре своеобразную подвижную пространственную сетку, отличную от жесткой сетки каркаса в кристаллических структурах. За счет подвижных прослоек материалы с коагуляционной структурой обладают тиксотропией, т.е. способностью разжижаться под влиянием механических воздействий с обратимым восстановлением структуры и свойств в последующий период покоя. Тиксотропия, пониженная прочность, ярко выраженная ползучесть наиболее характерные свойства коагуляционной структуры.

Конденсационные – структуры, возникшие при непосредственном взаимодействии частиц или под влиянием химических соединений в соответствии с валентностью контактирующих атомов или под влиянием ионных ковалентных связей.

Но чаще всего встречается смешанный тип структур, причем преобладание того либо иного типа структуры обуславливает различие свойств.

Подвижную пространственную сетку структур ГИМ образуют органические вяжущие вещества – битумы, дегти, термопластичные синтетические смолы и др., обладающие обычно однородной структурой – коагуляционной, аморфной. В эксплуатационных условиях структура материалов может претерпевать изменения: при пониженных температурах наблюдается кристаллизация с образованием полидисперсных органических кристаллов; при повышении – переходит в вязко-текучее состояние с аморфной структурой. К кристаллизации приводит также и старение структур.

Твердые вещества, не обладающие кристаллизационной структурой, относят к аморфным. Для аморфной структуры характерно отсутствие дальнего порядка в расположении атомов и молекул, но, тем не менее, прослеживается ближний порядок. Такую структуру имеют каучуки, целлюлоза, ряд других полимеров. С течением времени аморфная структура может перейти в кристаллизационную.

Достаточно значительный объем в структуре занимают замкнутые или сообщающиеся поры. Они могут иметь разное происхождение и размеры. Поры нежелательны, т.к. понижают водонепроницаемость ГИМ. Поры и другие виды дефектов структуры являются концентраторами напряжений и аккумуляторами агрессивной среды.

Анализ структуры рубероида – наиболее массового ГИМ и кровельного материала, – показывает наличие в нем пор, незаполненных битумом. В покровном слое пористость достигает величины от 8 % до 10 %, а в картоне от 10 % до 25 %. Увеличение же объема свободных пор на 25 % ускоряет разрушение рубероида в 2,7 раза.

Оптимальная структура такая, в которой частицы, в том числе поры, распределены по объему равномерно; отсутствуют или содержатся в незначительном количестве дефекты; имеется непрерывная прослойка вяжущего вещества в виде жесткой или подвижной пространственной сетки минимальной толщины.

Неоптимальная структура такая, которая не удовлетворяет хотя бы одному из указанных обязательных признаков оптимальности.

Оптимальные структуры обеспечивают высокое качество ГИМ.

Из оптимальных структур выбирается рациональная, при которой ГИМ обладает комплексом заданных показателей качества.

Наряду со структурой ГИМ обладает и определенной текстурой (сложением), т.е. ориентацией главных структурных составляющих. Типичные текстуры – слоистая, волокнистая, зернисто-цементированная, зернисто-рыхлая, неупорядоченная и комбинированная.

2.2 Основные свойства гидроизоляционных материалов

Качество ГИМ определяются их техническими свойствами. Технические свойства объединяются в 4 группы.

1 группа – свойства, непосредственно отражающие отношение материала к водной и паровой средам. Таким образом, они характеризуют гидроизолирующую способность материала: водонепроницаемость, водопоглощаемость, водонасыщение, гидрофобность и гидрофильность.

2 группа – механические свойства материалов: прочность, пластичность, упругость, вязкость. Они определяют как способность ГИМ противостоять механическим воздействиям без нарушения сплошности структуры, так и технологичность их обработки.

3 группа – качественные характеристики, показывающие отношение материала к длительному воздействию внешней среды и геофизических факторов, стабильность основных показателей свойств гидроизоляции во времени. Показатели стабильности: набухаемость, водостойкость, морозостойкость, химическая и биохимическая стойкость, погодоустойчивость, долговечность.

4 группа – адгезионные свойства. Показывают способность ГИМ к сцеплению с поверхностью защищаемой конструкции или с промежуточным клеевым слоем.

При комплексной оценке качества ГИМ наряду с рассмотренными свойствами необходимо учитывать и ряд других свойств: теплоемкость, теплопроводность, звукопроводность, газопроводность, огнестойкость, горючесть, диссипативность.

2.2.1 Свойства, отражающие отношение материала к водной и паровой средам

Пористость – степень заполнения объема материала порами. Рассчитывается по формуле

Рис.2 Технология кровельных и гидроизоляционных материалов

где ρm – средняя плотность (масса единицы объема материала в естественном состоянии), г/см3.

ρ – истинная плотность (масса единицы объема абсолютно плотного материала), г/см3.

Пористость оказывает негативное влияние на свойства ГИМ.

Водонепроницаемость – способность материала не пропускать воду при постоянном гидростатическом давлении. Измеряется количеством воды, прошедшей в течение 1 часа через 1 см2 поверхности материала при заданном давлении воды. Также водонепроницаемость может характеризоваться периодом времени, по истечении которого появляются первые признаки просачивания воды при определенном гидростатическом давлении через образец испытуемого материала.

Устройство для определения водонепроницаемости кровельных и гидроизоляционных материалов представлено на рисунке 3.

Рис.3 Технология кровельных и гидроизоляционных материалов

1 – рабочая камера; 2 – резиновые прокладки; 3 – обра зец; 4 – контактная сетка; 5 – прижимная плита; 6 – зажимные винты; 7 – краны; 8 – резиновая трубка, соединяющая с водопроводом; 9 – манометр

Рисунок 3 – Устройство для определения водонепроницаемости кровельных и гидроизоляционных материалов

Водопоглощаемость – способность материала впитывать и удерживать воду

(процесс впитывания воды – водопоглощение). Характеризуется количеством воды, которую впитывает и удерживает сухой образец после погружения на 24 часа в воду при температуре 20 °С

Рис.4 Технология кровельных и гидроизоляционных материалов

m3 – масса образца после суточной выдержки в воде, г;

m2 – масса образца после одноминутной выдержки в воде, г;

m1 – масса образца в сухом состоянии до испытания, г. В ряде случаев определяют объемное водопоглощение.

Водонасыщаемость – свойство материала впитывать воду в поры, в которых предварительно искусственным путем с помощью вакуумнасоса был создан вакуум.

Гигроскопичность – способность материала поглощать влагу из паровоздушной среды, в частности из влажного воздуха. Степень поглощения влаги зависит от относительной влажности и температуры воздуха. За стандартную величину принимают отношение массы влаги, поглощенной при относительной влажности воздуха, равной 100 %, и температуре +20 °C, к массе сухого материала.

В материале пары конденсируются, и влага находится в свободном, капиллярном и связанном (адсорбционно-сольватном) состоянии.

Влагоотдачей называют способность материала отдавать влагу в окружающую среду. Характеризуется количеством воды, теряемой материалом в сутки при относительной влажности воздуха, равной 60 %, и температуре +20 °C.

Гидрофильность и гидрофобность – это способность и неспособность соответственно материала смачиваться водой. Для ГИМ гидрофобность является средством повышения водостойкости, водонепроницаемости и снижения гигроскопичности.

Влажность – содержание влаги, отнесенное к массе материала в сухом состоянии.

2.2.2 Механические свойства

Механические свойства характеризуют способность материала сопротивляться силовым, температурным, усадочным и другим внутренним напряжениям без нарушения установившейся структуры и при полном сохранении сплошности.

Между характером структуры и механическими свойствами наблюдается непосредственная взаимосвязь.

Механические (структурно-механические) свойства разделяются на деформационные и прочностные.

Деформационные свойства характеризуются наличием деформаций; могут быть обратимыми и необратимыми. Обратимые – упругие и эластичные, – характеризуются полным спадом деформаций, соответственно мгновенным или в течение длительного времени после снятия нагрузок. Величина обратимой деформации – важный показатель качества ГИМ, содержащих каучук и другие каучукообразные компоненты.

Необратимые деформации – пластические, ползучесть – не только не исчезают после снятия нагрузки, но могут даже возрастать, например, под влиянием собственной массы (ползучесть).

Под воздействием силовых факторов наблюдаются как обратимые, так и необратимые деформации.

Характер деформации наиболее четко проявляется после снятия нагрузок по величине и продолжительности их спада (упругому последействию).

Графические зависимости деформаций от времени действия нагрузок представлены на рисунке 4.

Пластическая деформация, медленно нарастающая без увеличения напряжений в материале, называется текучестью.

С повышением температуры, уменьшением скорости деформирования, пластическая деформация возрастает (при одинаковой нагрузке).

Ползучесть большинства ГИМ достигает значительных размеров и возрастает с повышением температуры, поэтому деформации ползучести определяются при наивысшей температуре, при которой будет работать материал в конструкции.

При изучении реологических свойств материалов (реология – наука о текучести материалов) пользуются величиной вязкости или обратной ей величиной – текучестью.

Вязкость характеризует внутреннее трение жидкости или сопротивление перемещения одного слоя жидкого вещества относительно другого.

Рис.5 Технология кровельных и гидроизоляционных материалов

а – упругая деформация; б – упругоэластическая деформация; в – пластическая деформация; г – упруговязкопластическая деформация

Р – нагрузка; εо – упругая деформация; εэ – эластическая деформация; εпл – пластическая деформация

Рисунок 4 – Графики зависимости деформаций (ε) от времени (τ) действия нагрузок

Рис.6 Технология кровельных и гидроизоляционных материалов

Рисунок 5 – График текучести (а) и ползучести (б)

Материал, подвергшийся воздействию внешних сил, способен самопроизвольно снимать часть внутренних напряжений за счет молекулярных перемещений и перестройки структуры со снижением упругой энергии и переходом ее в теплоту до состояния устойчивого равновесия в новых условиях. Процесс снижения напряжений в материале при постоянной деформации, строго зафиксированной жесткими связями, называется релаксацией. Время, в течение которого напряжение в материале понижается в е=2,72 раза, называется временем или периодом релаксации (Q). У жидких ГИМ Q~10±10 с, у твердых Q~1010 с и более (т. е. десятки, сотни лет). С повышением температуры и при отсутствии химических превращений период релаксации уменьшается.

При малых периодах наблюдения (нагружения), значительно (в несколько десятичных порядков) меньших периода релаксации материал ведет себя как упругохрупкое тело, а при длительных периодах воздействия нагрузки (наблюдения) тот же материал, даже под воздействием собственной массы, обнаруживает ньютоновское (вязкое) течение (лед).

Вязкое течение может наблюдаться при эксплуатации ГИМ на вертикальных поверхностях. Его значение рассчитывают по формуле

Рис.18 Технология кровельных и гидроизоляционных материалов

где Е – жесткость;

Q – период релаксации.

Таким образом, удлинение материала без разрывов будет зависеть от жесткости Е и времени релаксации Q.

Прочностные свойства характеризуют способность материала не разрушаясь сопротивляться внутренним напряжениям, возникающим под воздействием механических, тепловых и других факторов. Для ГИМ прочность выражается пределом прочности при разрыве, сжатии, сдвиге, пределом упругости и т.д.

Эти величины являются условными, т.к. зависят от методики испытания материалов и, как правило, не учитывают продолжительности действия нагрузки.

Если для ГИМ с кристаллизационной структурой эти условные показатели хрупкого разрушения можно считать достоверными вследствие огромных периодов релаксации, то в отношении вязко-пластичных материалов при испытании следует учитывать фактор времени.

В случае нехрупко-пластичного разрушения образца обычно определяют лишь условный предел прочности, принимая за него величину частного от деления нагрузки, при которой происходит нарастание деформаций без увеличения усилия (регистрируется на шкале силоизмерителя), на площадь начального поперечного сечения образца в форме цилиндра или призмы. Полимеры испытывают при температуре 20 °C.

Изучая кинетику развития деформаций при постоянной нагрузке или кинетику развития напряжений при постоянных деформациях, получают числовые данные для построения реологических кривых в системе координат ε/σ, где ε – градиент скорости деформации.

По реологической кривой устанавливается предельное напряжение сдвига σк, соответствующее пределу текучести материала.

Сопротивление материала ударному действию нагрузки измеряется количеством работы, затрачиваемой на разрушение образца, принятого по стандарту, отнесенной к единице его объема (кг·см/см3) или к площади поперечного сечения (кг·см/см2).

Рис.7 Технология кровельных и гидроизоляционных материалов

σs – предел упругости; σт – преде л текучести; σр – предел прочности

Рисунок 6 – График предельных напряжений

Рис.8 Технология кровельных и гидроизоляционных материалов

где σ – напряжения; ε – деформации; η – текучесть

Рисунок 7 – Реологическая кривая

Твердость – способность материала сопротивляться проникновению в него других, более твердых тел. Метод определения твердости основан на вдавливании в испытуемый образец стального шарика или на перемещении по поверхности образца специального твердого наконечника (индентора). Мерой твердости служит отношение нагрузки к площади отпечатка.

Гибкость – для рулонных ГИМ определяется путем огибания вокруг бруска с криволинейной поверхностью образцов-полосок стандартной ширины на угол 180° при определенной температуре. Качество оценивают по нарушению сплошности материала при изгибе.

Технологические свойства или удобообрабатываемость также отражают механические свойства. Основные среди них – подвижность смесей, жесткость их, уплотняемость, укрывистость.

2.2.3 Свойства, характеризующие долговечность материала

Под ними понимают способность материала сохранять, не изменяя свою структуру, а в ряде случаев упрочнять ее со временем за счет процессов старения. Основными дестабилизирующими факторами являются вода, колебания температуры, климатические и биологические факторы.

Набухаемость – способность материала увеличиваться в объеме при насыщении водой. При этом наблюдается поглощение гигроскопичной (пленочной) воды. Это сопровождается раздвижкой отдельных структурных частиц. При последующем высыхании наблюдаются усадочные явления и восстановление структуры, но не полное. Многократное набухание и высыхание сопровождаются разрушением материала.

Водостойкость – способность материала сохранять в водонасыщенном состоянии механические свойства. Характеризуется отношением предела прочности при сжатии в водонасыщенном состоянии к пределу прочности в сухом состоянии.

Морозостойкость – способность материала в водонасыщенном состоянии выдерживать многократное, циклическое замораживание и оттаивание без признаков разрушения и без значительного понижения прочности. Для ГИМ после 5 и более циклов испытания снижение прочности должно быть в определенных пределах, например, не более чем на 10-25 %, а потеря в массе – не более 5 % от первоначальных значений.

Химическая стойкость – способность материала сопротивляться агрессивному действию среды и сохранять постоянными состав и структуру материала в условиях инертной окружающей среды. Влияние среды проявляется в старении материалов.

Биохимическая стойкость – способность материала сопротивляться биологическим процессам, возникающим в эксплуатационный период и связанными с заражением грибами, порчей насекомыми, прорастанием растений и т.п.

Теплостойкость – способность материала сохранять в допустимых пределах механические и другие технические свойства при нагревании. Определяется температурой, при которой начинается деформирование испытуемого образца.

Температуроустойчивость – способность образцов выдерживать в сушильном шкафу без видимых деформаций в течение определенного времени заданную температуру в подвешенном состоянии.

2.2.4 Свойства, характеризующие адгезию

Под адгезией понимают способность двух разнородных материалов сцепляться своими поверхностями, например, гидроизоляционного с конструкционным. Адгезия определяет прочность и стабильность гидроизоляционного слоя на защищаемой поверхности. Различные ГИМ имеют разное сцепление с одной и той же поверхностью. Прочность прилипания, например, мастики, зависит от ее поверхностного натяжения, вязкости, температурных условий, концентрации ПАВ и т.д.

Рис.9 Технология кровельных и гидроизоляционных материалов

1 – поверхность; 2 – мастика; 3 – воздух

Рисунок 8 – Краевой угол смачивания гидроизоляционным материалом гидрофобной поверхности

Адгезия рассчитывается по формуле

Рис.17 Технология кровельных и гидроизоляционных материалов

где σãâ – поверхностное натяжение гидроизоляционного вещества (Г) на границе раздела с воздушной средой (В);

φ – краевой угол смачивания на границе раздела гидроизоляцияподкладка (П).

Для увеличения адгезии необходимо увеличить σгв либо снизить φ. Величина φ зависит от природы поверхности подкладки. Необходимо гидрофобизировать ее за счет, например, хемосорбции на границе раздела фаз.

Основным же регулятором адгезии является σгв, которое находится в прямой зависимости от вязкости и в обратной – от квадрата толщины склеивающей пленки. Повышение вязкости для каждого материала имеет некоторую предельную границу, поскольку сопровождается быстрым ростом периода релаксации, т.е. развитием упруго-хрупких свойств, что может оказаться крайне нежелательным в области отрицательных температур. Со снижением смачиваемости материала уменьшается и адгезия. Смачиваемость повышается со снижением вязкости, поверхностного натяжения, при повышении температуры и вибрационном воздействии.

Оценка адгезионной способности ГИМ проводится на приборах методом сдвига и отрыва. Эти методы условные, т.к. не учитывают релаксацию напряжений, что приводит к завышению показателей адгезии.

При комплексной оценке качества твердых и вязкопластичных ГИМ учитывают также величину когезии, т.е. прочность связи молекул (атомов, ионов) самого ГИМ, что обусловлено межмолекулярным электростатическим взаимодействием и химической связью.

2.2.5 Стандартные методы и приборы для оценки свойств

Для рулонных кровельных и гидроизоляционных материалов определяют полноту пропитки картонной основы вяжущим, разрывную нагрузку при растяжении в продольном и поперечном направлениях, гибкость, массу покровного слоя, прочность сцепления крупнозернистой посыпки с покровным слоем, цветостойкость посыпки.

У мастичных ГИМ – битумных, битумно–резиновых и др. – производят проверку внешнего вида, определение теплостойкости, хрупкости, гибкости, клеящих свойств, деформативности, вязкости, содержания воды и водопоглощения, содержания наполнителя и сухого остатка, биостойкости, уровня токсичности, однородности, плотности, времени отверждения и высыхания, цвета и др.

3 Теоретические положения качества гидроизоляционных материалов

3. 1 Основные условия надежной гидроизоляции

Высококачественные ГИМ должны отвечать следующим требованиям:

– применяемые для гидроизоляции материалы плохо смачиваются водой;

– исключается возможность свободного перемещения воды по порам и капиллярам изоляционного слоя;

– тормозится диффузное проникновение воды, если нельзя полностью предотвратить диффузию;

– обеспечивается необходимая прочность и деформативность ГИМ;

– сохраняется долговечность материала в конструкции, что адекватно относительной стабильности его структуры.

Таким образом, основным требованием к ГИМ является гидрофобность.

Как ранее отмечалось, ГИМ должен быть гидрофобным, т.е. не смачиваться водой, и тогда водопоглощение, гигроскопичность будут иметь минимальные значения и способствовать повышению долговечности конструкции

Создание не смачиваемой поверхности весьма сложная задача. Способность к смачиванию поверхности характеризуется наличием у нее свободной энергии и зависит от полярности наносимой жидкости. Свободная поверхностная энергия вещества обусловлена наличием на его поверхности некомпенсированных химических связей вследствие ее дефектности.

Рис.10 Технология кровельных и гидроизоляционных материалов

Рисунок 9 – Схема действия сил поверхностного натяжения на поверхности гидроизоляционного материала

Для ГИМ обычно: 1- вода, 2 – воздух, 3 – изоляционный материал.

Чем меньше разность в избытке свободной энергии соприкасающихся фаз или разность их поверхностных натяжений, тем полнее и легче происходит смачивание. Из условия равновесия сил, действующих на поверхность смачиваемого тела, следует

Рис.11 Технология кровельных и гидроизоляционных материалов

где σ23, σ13, σ12– поверхностные натяжения на границах раздела соответствующих фаз 1, 2, 3.

Из уравнения видно, что смачиваемость уменьшается с ростом краевого угла смачивания ϕ, который для гидрофобных материалов больше 90°. При этом cosφвеличина отрицательная, а, следовательно, и разность σ23‒σ13 – величина отрицательная и желательно получение наибольшей ее величины при уменьшение σ12. Но σ12 (вода-воздух) – величина постоянная и при t=20 °C равна 72,8 эрг/см2, поэтому необходимо максимально увеличиватьσ13 и уменьшать σ23. Для понижения σ23 необходимо выбирать материал, обладающий наименьшей полярностью на границе с воздухом.

За меру полярности удобно принимать диэлектрические свойства, например, диэлектрическую проницаемость. Она имеет малые значения для полимеров (от 2,4 до 2,9 для полиизобутилена) и битумов (от 2,5 до 3,0); для воды – 81,0.

Введение в битум минерального порошка с образованием асфальтового вяжущего повышает его диэлектрическую проницаемость (от 4,8 до 6,5). Поскольку замерить σ23 трудно, то основное внимание при разработке ГИМ следует уделять повышению величины σ13, т.е. избытку свободной энергии на границе гидроизоляции с водой, который увеличивается с понижением полярности ГИМ, т.к. полярность воды постоянная.

С приближениемϕк нулю работа адгезии переходит в работу когезии, равную Wk=2σ12. Таким образом, ГИМ 1 должен хорошо смачивать защищаемую поверхность 2, что характеризуется большим значением cosϕ1, но плохо смачивается водой 3, что характеризуется малым значением cosϕ2.

ϕ1– краевой угол смачивания между фазами 1 и 2;

ϕ2– краевой угол смачивания между фазами 1 и 3.

Рис.12 Технология кровельных и гидроизоляционных материалов

Рисунок 10 – Схема действия сил поверхностного натяжения на поверхности гидроизоляционного материала, смачиваемого водой

Таким образом, необходимо сочетать факторы, способствующие понижению σ23 и повышению σ13, с экспериментальным определением величины углаϕи вычислением обеих значений cosϕ.

Если ГИМ при испытании не дает тупого угла смачивания водой (отрицательного значения cosϕ), то на поверхность конструктивного материала следует нанести тонкий слой пленкообразного гидрофобного вещества. Создание гидрофобной поверхности (наружной и внутри пор) является одним из основных условий хорошей гидроизоляции.

Несмачиваемость поверхности гидроизоляционного слоя – необходимое, но не достаточное условие эффективной защиты конструкции от воздействия воды, т.к. последняя может проникать в материал вследствие капиллярного подсоса. В зависимости от степени гидрофобности стенок капилляра, их способности смачиваться водой изменяется высота или глубина подсоса воды. Если стенки капилляров гидрофобны, то вода в них не заходит, а оказавшаяся в них вода опустится ниже уровня окружающей водной среды.

Проникание воды в капилляры и поры материала предотвращается давлением, возникающим на менисках и направленным вдоль оси. Схема действия сил в капилляре гидрофобного материала представлена на рисунке 11.

Рис.13 Технология кровельных и гидроизоляционных материалов

1 – вода; 2- слой гидроизоляционного материала; 3- конструкция.

Рисунок 11 – Схема действия сил в капилляре

Величина капиллярного давления воды рассчитывается по формуле где σ – поверхность натяжения воды на границе с воздухом (при 20 °C равно 72,8 дин/см);

Рис.14 Технология кровельных и гидроизоляционных материалов

g – ускорение свободного падения, 9,81 м/с2;

ϕ— краевой угол смачивания у менисков;

cosϕ— характеристика смачивания;

r – радиус капилляров или пор, см.

Таким образом, для повышения качества ГИМ необходимо уменьшать «r», увеличивать «ϕ».

Это достигается:

1) уменьшение «r»: максимальным уплотнением гидроизоляционной массы;

проектированием состава зернистой смеси ГИМ по принципу наибольшей плотности с последующим заполнением оставшихся пустот вяжущим веществом;

2) увеличение «ϕ» у менисков: достигают теми же способами, что и при снижении смачиваемости наружной поверхности гидроизоляционного покрытия (гидрофобизация).

Необходимо также предохранять поверхность изоляционного покрытия от посторонних наносов, не допуская механического проникновения их в поры. Наносы, обычно гидрофильные по своей природе, уменьшают краевой угол смачивания.

Таким образом, для предотвращения проникания капиллярной воды необходимо повышать плотность слоя изоляции и снижать полярность поверхности внутренних пор, капилляров и других полостей в материале, в том числе путем предварительной гидрофобизации заполнителей физической или химической адсорбцией.

Однако, проникновение воды вовнутрь ГИМ может происходить и вследствие диффузии ее от мест с большей концентрацией в места с меньшей концентрацией. Местами концентрации воды являются «внутренние дефекты» структуры (гидрофильные частицы твердой высокодисперсной фазы), а также поверхностноактивные вещества (ПАВ), коллоидно растворяющие воду.

Для замедления диффузии необходимо:

1) не допускать в вяжущем водорастворимых примесей;

2) ограничивать в вяжущем содержание ПАВ с тем, чтобы после объединения вяжущего с минеральными компонентами не оставалось ПАВ в свободном состоянии;

3) тщательно обрабатывать композиционные смеси в мешалках.

3.2 Регулирование структурно-механических свойств ГИМ

Наряду с гидроизолирующей способностью ГИМ должны обладать достаточной прочностью, деформативностью и рядом других свойств.

Свойства ГИМ зависят от состава и структуры материалов, т.е. количество и качества вяжущего вещества, качества и количества наполнителей и заполнителей, технологии приготовления ГИМ, пористости материала. Основное свойство ГИМ – механическая прочность, определяемая при определенной температуре и скорости приложения нагрузки – обусловлено в основном прочностью вяжущего вещества оптимальной структуры, соотношением фаз и качеством заполнителя. Под соотношением фаз понимают количественное (по массе) соотношение дисперсной среды (С) и дисперсной фазы (Ф), т.е. С/Ф. Дисперсная среда в разных ГИМ – вода (цемент, бетон), битум, полимер, олигомер, коллоидный или истинный раствор и др., а дисперсная фаза – цемент и другие минеральные вяжущие, порошкообразные или иные наполнители.

4 Основы технологии ГИМ

Технология – наука о процессах и способах производства. Химическая технология – наука о методах и процессах химической переработки сырья в продукты, материалы и изделия.

При большом разнообразии технологии ГИМ можно выделить ряд типичных процессов и переделов общих для многих технологий. К ним относятся: подготовительные работы, перемешивание отдозированных компонентов, формование смеси и ее уплотнение, специальная обработка материалов и изделий.

4.1 Подготовительные работы

Цель подготовительных работ – придание сырью технологичного состояния, удобного для прохождения его по всей последовательности технологических операций. В них входят: дробление, помол, распушка и другие способы диспергирования сырья; фракционирование и очистка поверхности частиц; обогащение, т.е. повышение однородности сырья по массе и по качественным показателям. Эти операции зачастую совмещаются с физико-химической обработкой с целью повышения активности поверхности частиц или изменения ее полярности, поверхностного натяжения и др. К подготовительным операциям относятся также нагревание компонентов, высушивание и увлажнение.

4.2 Перемешивание

Перемешивание отдельных сырьевых компонентов и всей смеси – основная технологическая операция. При перемешивании наблюдаются процессы смачивания, растворения, набухания, формирования гетерогенных многофазных систем.

В производстве кровельно-гидроизоляционных и антикоррозионных материалов, особенно с использованием полимеров, выбор типа смесителя определяет качество перемешивания, структуру (на микро- и макроуровне) готовой продукции.

Наиболее распространено механическое перемешивание в роторных смесителях принудительного действия.

Основой частью таких смесителей служит ротор, т.е. вращающийся вал с насаженным на нем фигурным валком. В рабочей камере смесителя расположены два валка, вращающихся навстречу друг к другу с разными скоростями. В камеру с помощью плунжера периодически подается перемешиваемая масса из отдозированных компонентов. Выгрузка перемешанной смеси осуществляется через днище, оборудованное скользящей дверцей, приводимой в действие пневмоцилиндром.

Рис.15 Технология кровельных и гидроизоляционных материалов

1 – загрузочная воронка; 2 – откидная дверца; 3 – пневматический цилиндр; 4 – запирающее устройство; 5 – камера смесителя; 6 – фигурные смесительные роторы; 7 – фундаментная чугунная плита; 8 – скользящая дверца разгрузочного устройства; 9 – пневматический цилиндр для перемещения нижнего затвора

Рисунок 12 – Роторный смеситель

Наряду с роторными используются смесители других конструкций как периодического, так и непрерывного действия: барабанные – стальные цилиндры, вращающие на цапфах; лопастные – имеют два лопастных вала, вращающихся навстречу друг к другу с разной скоростью и перемешивающие смесь в горизонтально либо вертикально расположенном корпусе; валковые – со смешением на вальцах, вращающихся навстречу друг другу при некотором зазоре между ними; червячные – типа шнеков; гравитационные – со свободным перемешиванием при падении смеси под действием силы тяжести.

Смесители СМБ. Имеют два вала, оборудованные Z-образными лопастями и расположенными в корпусе, состоящем из двух полуцилиндров. Привод от электродвигателя осуществляется на один из роторов, а на второй передается через шестереночную пару, расположенную снаружи корпуса. Смесь пластифицируется при прохождении ее через узкий зазор между корпусом и поверхностью ротора.

Рис.16 Технология кровельных и гидроизоляционных материалов

Рисунок 13 – Схема смесителя СМБ

Для выгрузки готовой смеси корпус посредством винтового механизма поворачивается вокруг оси приводного вала ротора на угол от 120° до 130°.

Некоторые смесители СМБ разгружаются посредством шнека, расположенного в нижней части корпуса. Рабочий объем смесителей: 100, 200, 400, 600 дм3.

Резиносмеситель (РС). Перемешивание осуществляется двумя роторами. У смесителя вместо крышки корпуса сверху располагается поршень с пневматическим приводом. В закрытом положении поршень увеличивает поверхность пластификации и качество ее. Возрастает производительность смесителя. Смесь выгружается через низ рабочей камеры, днище которой состоит из двух створок, открывающихся при помощи гидропривода. Рабочий объем смесителей 72, 250 и 600 дм3.

Шнековые смесители. Представляют собой корпус, в котором размещены два вала с насаженными на них кулачками. Кулачки обоих роторов по длине имеют различную форму двоякой кривизны или треугольную с выгнутыми наружу поверхностями. Корпус имеет паровую рубашку, штуцера для подачи компонентов. Роторы вращаются синхронно в одну сторону; вращение передается от электродвигателя и редуктора через систему шестерен. Мощность привода смесителя СН-800 – 180 кВт при числе оборотов n=80 мин-1

Продолжить чтение