Читать онлайн Общая и Неорганическая химия с примерами решения задач бесплатно

Общая и Неорганическая химия с примерами решения задач

Михаил Иванович Бармин

ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ С ПРЕМЕРАМИ РЕШЕНИЯ ЗАДАЧ

Введение

Настоящее учебное пособие предназначено для абитуриентов, сдающих ЕГЭ в 2017 и последующих годах. В связи с обновлением большинства учебных пособий и учебников по общей и неорганической химии выпуск учебного пособия такого типа актуален. Данное пособие отличается от аналогичных изданий, например тем, что в конце его приводится как бы краткая аннотация лекций, что помогает, с одной стороны, запоминанию, с другой – помогает понять историю возникновения понятий и законов и внутри предметной связи. В этой книге есть решения типовых задач (тесты 27-29), что несомненно повысит качество преподавания. Суперполезно для студентов России, Белоруссии, Украины и всех знающих русский язык, более того полезно для студентов всех форм и типов образования не химических вузов. Будем рады предложениям и замечаниям.

Доцент, канд. хим. наук      М.И.Бармин

тел.: 588–73–45; e–

[email protected]

СТУДЕНТЫ И АБИТУРИЕНТЫ – НА ДИЕТУ!

Научно доказано: концентрация внимания, находчивость и даже творческие озарения – отнюдь не случайность. Все это вполне достижимо с помощью …еды.

Хотя мозг человека и составляет всего 2–3 процента от общей массы тела, но он очень любит «поесть». Представьте себе, что 20 процентов калорий, потребляемых вами в день «съедает» именно этот обжора. Соответственно рацион, можно сказать, определяет и умственные способности. Одни продукты стимулируют работоспособность, другие – быстроту мышления, третьи – концентрацию.

Лучшему запоминанию способствует морковь (она участвует в процессе обновления клеток мозга). Перед тем как что–либо учить, съешьте тарелочку тертой моркови с растительным маслом.

Любимый фрукт театральных звезд – ананас. Чтобы помнить наизусть огромные монологи, необходим витамин С, которого в нем много, а вот калорий очень мало. Стакан ананасового сока в день – вещь незаменимая. Хорош для улучшения памяти и авокадо. Достаточно половины в день.

Аромат острого перца стимулирует выделение «гормона счастья» – эндорфина. И чем острее перец, тем вы счастливее. Ягода менеджера – клубника, содержащийся в ней пектин снимает стресс. Секрет популярности бананов, возможно, в серотонине – это как раз то, чего не хватает мозгу для полного счастья. Ну и, конечно, витамины и кальций.

От нервозности вас избавит капуста: ешьте ее перед экзаменами и будьте спокойны. Ничто так не освежит вас и ваши знания, как лимон. Перед занятиями иностранным языком выпейте стакан лимонного сока. Черника – идеальный перекус между долгими и нудными занятиями. Она улучшает кровоснабжение мозга. Лучше всего – свежие ягоды, но их можно заменить и соком (не осветленным).

От перенапряжения и психической усталости лучшее средство – лук. Не меньше половины луковицы в день – и никакой усталости! Орехи – старое, испытанное средство в тех случаях, когда требуется выносливость (доклады, конференции, концерты, долгое время за рулем).

Имбирь очистит голову для новых идей. Кровь разжижается, течет быстрее и свободнее. Не заменим для журналистов, людей

творческих профессий. Чайная ложка свежего имбиря перед ответственным мероприятием – милое дело. Тмин – отец гениальных идей и молниеносных озарений. Его масла стимулируют всю нервную систему, что способствует творческому мышлению.

Если вы ждете от себя новых идей, выпейте чашечку тминного чая. Рецепт: 2 чайных должки молотых зерен тмина на чашку.

Для питания клеток мозга просто незаменима морская рыба. На смену знаменитому рыбьему жиру пришли менее противные на вкус капсулы. Их можно купить в аптеке, а глотать рекомендуется в стрессовых ситуациях или перед экзаменами.

Но сахара для повышения трудоспособности не ешьте: это не поможет. Для нормального функционирования нашему мозгу нужно очень много глюкозы. Чистый сахар быстро попадает в кровь и проясняет голову. Но в ответ на это организм выбрасывает инсулин – так называемый «пожиратель сахара», после чего «чудесная сила» сахара резко ослабевает, и через десять минут вы уже снова чувствуете себя усталым и разбитым. Намного лучше вместо чистого сахара есть продукты в которых он находится в сложных соединениях: хлеб грубого помола, орехи, рис, мюсли или сухофрукты. Они дольше расщепляются – вы вновь почувствуете себя бодрым.

По материалам прессы

Слова химии. Генетическая связь

КЛАСС НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Нетрадиционно представлена эта глава, т.к. десятилетия педагогической практики показывают, что химическая грамотность абитуриентов и студентов падает.

1.КЛАСИФИКАЦИЯ И НОМЕНКЛАТУРА ХИМИЧЕСКИХ СОЕДИНЕНИЙ

Все химические соединения подразделяются на классы. Существуют также определенные правила их наименования.

Вещества подразделяются на простые и сложные. Простые вещества состоят из атомов одного элемента. Сложные вещества состоят из двух или нескольких атомов разных элементов.

Простые вещества делятся на металлы и неметаллы. Металлы отличаются характерным металлическим блеском, ковкостью, тягучестью, могут прокатываться в листы и проволоку, обладают очень хорошей тепло– и электропроводностью. При обычной температуре все металлы, кроме ртути, являются твердыми веществами (Na, Mg, Al, Mn, Ti). В химических реакциях металлы в нулевой степени окисления проявляют только восстановительные свойства.

Неметаллы не обладают металлическим блеском, хрупки, очень плохо проводят теплоту и электричество. При обычных условиях они являются или твердыми веществами (S, P, C), или газообразными (F2 Cl2, O2, H2), Br2 – жидкость. В химических реакциях неметаллы могут проявлять как окислительные, так и восстановительные свойства (исключение составляет F2, фтор является только окислителем в реакциях с другими веществами).

Сложные вещества делятся на классы:

во-первых, по составу (бинарные, т.е. двухэлементные; многоэлементные; кислородосодержащие; азотосодержащие и т.д.);

во-вторых, по свойствам или функциям ( по кислотно-основным, окислительно-восстановительным).

К важнейшим бинарным соединениям относятся:

оксиды – соединения элемента с кислородом;

галогениды – соединения элемента с галогеном;

нитриды – соединения элемента с азотом;

карбиды – соединения элемента с углеродом;

сульфиды – соединения элемента с серой;

гидриды – соединения металла с водородом (соединения неметаллов с водородом не рассматривают как гидриды, их относят к классу бескислородных кислот).

в результате реакций обмена

Na2CO3 + SiO2 = Na2SiO3 + CO2

К классу гидроксидов относятся соединения, содержащие одну или несколько гидроксильных групп – ОН.

Гидроксиды в свою очередь делятся на основания, кислоты (кислородосодержащие, бескислородные) и амфотерные основания. Принадлежность гидроксида к основаниям или кислотам определяется прочностью связи между элементом и кислородом и кислородом и водородом.

Если в гидроксидах связь О – Н более полярная, чем связь О – Э, то при попадании в полярный растворитель эта связь будет еще больше поляризоваться и перейдет в ионную. При диссоциации образуется катион водорода и анион так называемого кислотного остатка. Такой гидроксид относят к классу кислот:

HNO3 = H+ + NO3-      ,

Н+ протон, ион водорода, катион (положительно заряженный ион).

NO3- – нитрат ион, анион, кислотный остаток азотной кислоты.

Если же оказывается более полярной связь между элементом и кислородом, то в полярном растворителе при поляризации связи электронная плотность смещается в сторону кислорода и образуется гидроксильный анион (гидроксид ион) и катион элемента:

Согласно теории электролитической диссоциации к основаниям относятся электролиты, при распаде которых на ионы в качестве анионов образуются только гидроксид ионы.

KOH K+ + OH-

С этой точки зрения, к основаниям относят гидроксиды металлов и гидроксид аммония (NH4OH). Название таких оснований состоит из слова гидроксид и русского названия металла в родительном падеже (на пример гидроксид натрия NaOH). Если металл образует несколько оснований, то после названия указывается степень окисления металла в скобках римскими цифрами (на пример Fe(OH)2, Fe(OH)3: гидроксид железа II и III соответственно. Кроме того существует и традиционные названия, так гидроксид натрия NaOH называют едкий натр, каустическая сода; KOH называют едкий кали, Ca(OH)2 – гашеная известь.

Основания бывают растворимые в воде, малорастворимые и практически нерастворимые. Растворимые в воде основания называют щелочами.

По числу гидроксогрупп определяют кислотность основания. Так NaOH, KOH однокислотные основания; Ca(OH)2, Fe(OH)2 – двухкислотные; Fe(OH)3, Al(OH)3 – трехкислотные.

Основания двух– и более кислотные диссоциируют ступенчато:

1 ступень Ca(OH)2 CaOH1+ + OH1-

2 ступень CaOH1+ Ca2+ + OH1-

Получение оснований

Растворимые основания можно получить при взаимодействии щелочного (IА подгруппа) или щелочно-земельного (IIА подгруппа) металла с водой или оксида металла с водой:

2Na + 2H2O = 2NaOH + H2

Na2O + H2O = 2NaOH

Ca+2H2O=Ca(OH)2+H2

2) Малорастворимые основания получаются при взаимодействии соли соответствующего катиона с растворимым основанием:

FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4

Свойства оснований

Неорганические основания являются твердыми веществами, за исключением гидроксида аммония. Растворы оснований мыльные на ощупь, изменяют окраску индикатора фенолфталеина в малиновый цвет, а лакмуса – в синий.

Гидроксиды калия и натрия устойчивы к нагреванию. Большинство оснований разлагаются при нагревании на воду и соответствующий оксид

2.ОСНОВАНИЯ, КИСЛОТЫ, СОЛИ.

2.1Основания

По теории электролитической диссоциации к основаниям относятся электролиты, при электролитической диссоциации которых в качестве анионов образуются только гидроксид-ионы.

Кислотные оксиды взаимодействуют с основными оксидами и гидроксидами. В результате этого взаимодействия образуются соли:

SO3 + CaO = CaSO4

SO3 + Ca(OH)2 = CaSO4 + H2O

К амфотерным относят оксиды, которые могут проявлять свойства как основных оксидов, так и кислотных. То есть амфотерный оксид может взаимодействовать как с кислотой, так и с основанием. Амфотерные оксиды образуются некоторыми металлами в степени окисления +2 (BeO, ZnO, SnO, PbO) и почти всеми металлами в степени окисления +3 (Al2O3, Cr2O3).

ZnO + 2HCl = ZnCl2 + H2O

ZnO + 2NaOH = Na2ZnO2 + H2O

цинкат натрия

Амфотерным оксидам соответствуют амфотерные гидроксиды.

Если металл может иметь несколько степеней окисления, то с повышением степени окисления основные свойства его оксидов будут убывать, а кислотные усиливаться. Так MnO основной оксид, MnO2 амфотерный, а Mn2O7 кислотный.

Оксиды могут быть получены разными способами:

окисление простых веществ

4P + 5O2 = 2P2O5

2Mg + O2 = 2MgO

Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O

конц.

C + 4HNO3 = CO2 + 4NO2 + 2H2O

конц.

окисление сложных веществ

CH4 + 2O2 = CO2 + 2H2O

разложение сложных веществ

CaCO3 = CaO + CO2

2Cu(NO3)2 = 2CuO + 4NO2 + O2

Cu(OH)2 = CuO + H2O

2Fe(OH)3 = Fe2O3 + 3H2O

Все общие химические свойства оснований обусловлены наличием в них гидроксогрупп ОН-:

основания взаимодействуют с кислотами (реакция нейтрализации):

KOH + HCl = KCl + H2O

K+ + OH- + H+ + Cl- = K+ + Cl- + H2O

OH- + H- = H2O

основания реагируют с кислотными оксидами с образоваием соли и воды:

2NaOH + CO2 = Na2CO3 + H2O

2Na + 2OH– + CO2 = 2Na+ + CO32- + H2O

2OH- + CO2 = CO32- + H2O

растворимые основания реагируют с амфотерными оксидами и гидроксидами:

2NaOH + Al2O3 + 7H2O =Na[Al(OH)4(H2O)]

NaOH + Al(OH)3 + 2H2O = Na[Al(OH)4(H2O)2]

растворимые основания реагирует с растворимыми солями с образованием нерастворимых оснований.

2KOH + CuSO4 = Cu(OH)2 + K2SO4

2K+ + 2OH- + Cu2+ + SO42- = Cu(OH)2 + 2K+ + SO42-

2OH- + Cu2+ = Cu(OH)2

или

KOH + NH4Cl = KCl + NH4OH

K+ + OH- + NH4+ + Cl- = K+ + Cl- + NH4OH

OH+ NH4+ = NH4OH.

кислоты взаимодействуют с солями, если в результате реакции образуется или слабый электролит, или малорастворимое твердое, или газообразное вещество:

а) Na2CO3 + 2HCl = 2NaCl + H2CO3 H2O

2Na+ + CO32- + 2H+ + 2Cl- = 2Na+ + 2Cl + H2CO3

CO32- + 2H+ = H2CO3 CO2

б) AgNO3 + HCl = AgCl + HNO3

Ag+ + NO3- + H+ + Cl- = AgCl + H+ + NO3-

Ag+ + Cl- = AgCl

Кроме того, существуют неорганические кислоты – сильные окислители: HNO3, H2SO4 (концентрированная). Эти кислоты обладают особыми свойствами, которые определяются не катионами водорода, а высокой степенью окисления атомов элемента, образующего кислоту. Эти кислоты могут реагировать и с металлами, стоящими в ряду активности после водорода (кроме золота и платины) и с неметаллами. Подробно свойства этих кислот рассматриваются во II части учебника.

H2S – сероводородная кислота.

Название кислородсодержащей кислоты зависит от степени окисления элемента, образующего кислоту. Если элемент образует кислоту в своей максимальной степени окисления, то к названию элемента добавляют окончание -ная или –вая и слово кислота:

H2SiO3 – кремниевая кислота,

H2SO4 – серная кислота.

Если элемент образует две кислоты, находясь в 2-х степенях окисления, то для кислоты с максимальной степенью окисления элемента в названии будет окончание –вая или –ная; а для минимальной степени окисления окончание –истая:

HNO3 – азотная кислота, HNO2 – азотистая кислота;

H2SO4 – серная кислота, H2SO3 – сернистая кислота.

Если же элемент образует более, чем две кислоты, находясь в разных степенях окисления, то по мере понижения степени окисления элемента, образующего кислоту суфиксы и окончания будут меняться в следующем порядке:

–вая, -ная

–новатая

–истая

–новатистая.

HClO4 – хлорная кислота,

HClO3 – хлорноватая кислота,

HClO2 – хлористая кислота,

HClO – хлорноватистая кислота.

Некоторые элементы, находясь в одной и той же степени окисления, могут образовывать кислоты, различающиеся на группу (H2O). В таком случае кислота с меньшим числом атомов кислорода и водорода называется мета-, а с большим орто– кислотой:

H3PO4 – ортофосфорная кислота,

HPO3 – метафосфорная кислота,

Кроме этого, используют и традиционные названия:

HCl – соляная кислота, HF – плавиковая кислота.

По числу катионов водорода определяют основность кислоты: HNO3 – одноосновная кислота, H2SO4 – двухосновная кислота, H3PO4 – трехосновная кислота. Двух– и более основные кислоты диссоциируют в водных растворах ступенчато.

Сила кислоты определяется как способность кислоты к электролитической диссоциации.

В периодической системе в периоде слева направо кислотные свойства гидроксидов элементов усиливаются.

      Если один и тот же элемент образует несколько кислот, то с уменьшением степени окисления элемента уменьшается сила кислоты, то есть способность отдавать протон. Все это объясняется электронным строением молекулы и взаимным влиянием атомов в молекуле. Чем больше полярность связи Н – О, тем легче происходит электролитическая диссоциация по типу кислоты. А эта связь тем полярнее, чем меньше разница электроотрицательностей кислорода и элемента, образующего кислоту. В случае, когда один и тот же элемент образует кислоты, находясь в разных степенях окисления, сильнее будет кислота, образованная элементом в большей степени окисления.

Zn + 2HCl = ZnCl2 + H2

Zn + 2H+ + 2Cl- = Zn2+ + 2Cl- + H2

Zn + 2H+ = Zn2+ + H2

В качестве примера взаимодействия металлов с растворами кислот не следует брать такие активные металлы, как калий или натрий, так как эти металлы очень активны и будут реагировать с молекулами воды:

2Na + 2H2O = 2NaOH + H2

2Na + 2H2O = 2Na+ + 2OH- + H2

и далее OH+ H+ = H2O

кислоты взаимодействуют с основными оксидами:

2HCl + CaO = CaCl2 + H2O

2H+ + Cl- + CaO = Ca2+ + 2Cl- + H2O

2H+ + CaO = Ca2+ + H2O

кислоты взаимодействуют с основаниями:

2HCl + Ca(OH)2 = CaCl2 + 2H2O

2H+ + 2Cl- + Ca2+ + 2OH- = Ca2+ + 2Cl- + 2H2O

H+ + OH- = H2O

кислоты взаимодействуют с амфотерными оксидами:

6HCl + Al2O3 = 2AlCl3 + 3H2O

6H+ + 6Cl- + Al2O3 = 2Al3+ + 6Cl- + 3H2O

6H+ + Al2O3 = 2Al3+ + 3H2O

кислоты взаимодействуют с амфотерными гидроксидами:

3HCl + Al(OH)3 = AlCl3 + 3H2O

3H+ + 3Cl- + Al(OH)3 = Al3+ +3Cl- + 3H2O

3H+ + Al(OH)3 = Al3+ + 3H2O

Свойства солей

Свойства солей уже определены в указанных выше реакциях 7-11.

Кроме этого, следует помнить о таком важном свойстве, как способность солей гидролизоваться. Именно благодаря этому свойству, растворы многих солей имеют кислую или щелочную среду. На первых ступенях гидролиза образуются кислые или основные соли.

Задачи и решения к теме «Классификация неорганических соединений»

1.Какие окисидиы могут взаимодействовать с водой:

а) Al2O3, б) N2O5, в) CO, г) CO2, д) Na2O ?

2.С какими веществами может взаимодействовать гидроксид Na:

а) BaO, б) Ca(OH)2, в) SiO2, г) P2O5, д) H2SiO3 ?

3.Какие из перечисленных соединений можно использовать, чтобы осуществить переход KHCO3 K2CO3 :

а) NaOH, б) HNO3, в) H2O, г) CaO, д) Ca(OH)2 ?

4.Какие вещества и в какой последовательности могут быть использованы для осуществления превращений Cu CuO Cu(NO3)2 Cu(OH)2 :

а) HNO3, б) O2, в) KOH, г) KNO3, д) H2O ?

5.Напишите структурную формулу дигидрофосфата калия.

6.Напишите структурную формулу сульфита гидроксоцинка.

Решение

1.С водой взаимодействуют N2O5, CO и Na2O.

Ответ: 2, 4, 5.

2.NaOH может взаимодействовать со следующими веществами:

SiO2, P2O5 и H2SiO3.

Ответ: 3, 4, 5

Выбрать из приведенных кислот ортоугольную

H4C2O2

H2CO2

H2CO3

H4CO4

H2C2O4

Выбрать из преведенных соединений нитрит калия

K3N

KNO2

KN3

KNO3

K3NO4

Как назвать соединение (CuOH)2SO4

Кислая сернокислая медь

Сернокислая медь

Сернистокислая медь

Гидросульфат меди

Сульфат гидроксомеди

Часть I. Общая химия

Девиз: «ХИМИЯ И ЖИЗНЬ»

ЛЕКЦИЯ 1.

ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ

План лекции:

Введение (предмет химии, краткая история).

Роль химии.

Вещество – объект изучения.

Основные понятия.

Основные законы.

Химия – одна из фундаментальных естественных наук, знание которой необходимо для плодотворной творческой современного инженера любой специальности. Качество х-мических знаний приобретает особо важное значение в связи с необходимостью уменьшения энергозатрат, использования новых материалов и повышения надежности современной техники. Понимание химических законов помогает инженеру в решении экологических проблем. Изучение химии является частью задачи по формированию мировоззрения инженера и Человека.

Основной закон природы – закон вечности материи и ее движения. Химия изучает материальный мир и химическую форму движения материи.

Что же есть материя?

«Материя – есть философская категория для обозначения объективной реальности, которая дана человеку в ощущениях, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них». (В. И. Ленин).

Материя первична, а сознание вторично. Движение – основная форма существования материи. Условно различают следующие формы движения материи:

– механическая

– физическая

– химическая

– биологическая

– социальная Пример взаимодействия всех форм:

Один человек толкает другого, а у того из-под ноги срывается и падает вниз камень, состоящий из атомов Ca, C, O которые находятся в минерале кальците (CaCO3).

Более высокую по своей организации форму нельзя свести к более низкой, например физическую к химической.

Известны две формы существования материи: вещество и поле. Вещество – материальное образование, состоящее из материальных частиц, имеющих собственную массу. Поле – материальная среда, в которой осуществляется взаимодействие частиц.

Химия изучает первую форму существования материи – вещество. Химия – наука о превращении веществ. Изучает состав

строение веществ, зависимость свойств веществ от их состава

строения и пути превращения одних веществ в другие. Явления, при которых из одних веществ образуются другие,

называются химическими.

В развитии химии можно условно выделить следующие периоды:

I. Донаучная химия

Практическая и ремесленная химия

Алхимия. Открыто много новых веществ (в поисках «философского» камня) и методов очистки.

II. XVI век

Иатрохимия (врачебная химия) Парацельс, Агрикола

Теория «Флогистона» 1700 г. (Шталь) – особого вещества, удаляющегося при горении из соединений.

Аналитическая и пневматическая химия. Р.Бойль (XYII в.). – Химическая атомистика – (Бойль, Блэк, Пристли, Лавуазье).

III. Химическая революция 1748 г. – начало химии как науки.

Атомно-молекулярное учение М.В. Ломоносова.

Периодический закон и периодическая система элементов (1896 г.) Д.И. Менделеев.

Появление органической физической химии.

Развитие химии обусловлено тремя факторами:

а) социально-экономические условия развития общества; б) внутренние потребности самой науки; в) ученые – творцы науки, как сила, приводящая в движе

ние социальные законы развития общества.

Первыми металлами, на которые человек обратил внимание, были самородные медь и золото. Красноватую медь и желтоватое золото, отливающие красивым металлическим блеском, нельзя было не заметить среди тусклой серовато-коричневой породы.

Ударяя по кусочку металла, можно придать ему нужную форму. Это свойство металлов (ковкость) было обнаружено, безусловно, совершенно случайно. Человек начала изготавливать из металлических самородков различные украшения, стараясь подчеркнуть красоту металла.

Со временем выяснилось, что медь можно получить из камней определенного вида и что найти такие камни значительно проще, чем чистую самородную медь.

Можно представить, как это произошло. Загорелся лес, рос-ший на почве, в которой содержались какие-то голубоватые камню. Пришедшие на пепелище люди нашли в золе сверкающие шарики меди, и кто-то первый догадался, что, нагревая эти голубоватые камни на костре, можно получить медь.

Возможность получения меди окончательно установлена, по видимому, около 4000 г. до н.э., и скорее всего это случилось на Синайском полуострове или в горных областях Шумера территория современного Ирака.

А к 3000 г. до н.э. начали выплавлять значительно твердый металл, чем медь – бронзу – сплав меди и олова.

Получить железо из рудного камня, как получали медь, казалось невозможным, для этого необходимо более «жаркое пламя». Секрет плавки железа был открыт примерно в 1500 г. до н.э. в Малой Азии. Как было установлено, столь необходимое «жаркое пламя» может дать древесный уголь, если через горящий уголь продувать воздух.

Чистое железо не очень твердое. Однако в процессе плавки железо может вобрать в себя столько углерода из древесного угля, что в результате образуется поверхностный слой сплава желез и углерода, называемого сталью.

Расцвету древнегреческой философии предшествовали определенные успехи, достигнутые в прикладной химии. Египетские мастера занимались производством металлов, красителей, они научились бальзамированию.

Слово (XXX) произошло от греческого χυμος – сок растения, так что khemeia – это «искусство выделения соков». Сок, окотором идет речь, может быть и расплавленным металлом, так что может означать и «искусство металлургии».

В 600 г. до н.э. греческих ученых не интересовали способы получения тех или иных веществ и методы их практического использования. Их интересовала главным образом суть веществ и процессов. Они искали ответ на вопрос «почему»? Другими словами, древние греки первыми занялись тем, что сегодня называется химической теорией.

Эта теория начинается с Фалеса (640-546 гг. до н.э.). Фалес вероятно, задавал себе следующий вопрос. Если одно вещество может перейти в другое, как голубоватый камень (лазурит) переходит в красную медь, то какова же истинная природа вещества? Что представляет собой это вещество – камень или медь, или ни то и ни другое? Любое ли вещество переходит в другое вещество (хотя бы постепенно), и если любое, то не являются ли все вещества разными вариантами одного и того же основного вещества?

Оставалось решить, что же представляет собой это основное вещество, или элемент. Фалес решил, что этим элементом должна быть вода. Поскольку часть пространства между землей и небом, по наблюдениям человека, заполнена воздухом, то вполне можно было предположить, что воздух находится везде.

Размышления такого рода привели древнегреческого философа Анаксимена из Милета (585-525 г. до н.э.) к выводу, что поиск элемента необходимо связывать с поиском субстанции, для которой изменение наиболее характерно. Такой субстанцией Гераклиту, представлялся огонь – вечно меняющийся и все изменяющий.

Эмпедокл (490-430 г. до н.э.) подумал, почему не могут существовать четыре начала – огонь Гераклита, воздух Анаксимена, вода Фалеса и земля, которую в число начал ввел сам Эмпедокл?

Аристотель (384-322 гг. до н.э.) считал четыре элемента стихии не материальными субстанциями, а лишь носителями определенных качеств – теплоты, холода, сухости и влажности. Аристотель сделал еще один важный шаг. Каждый элемент он охарактеризовал определенным природным набором свойств. Так, огню присуще подниматься, а земле падать. Но свойства небесных тел отличались от свойств любого вещества темного

происхождения. Аристотель доказывал, что небеса состоят из «пятого элемента», который она называл эфир (от слова означающего «сиять», ибо характерное свойство небесных тел – сияние).

Другим важным вопросом, з-нимавшим греческих философов, был вопрос о делимости материи.

Камень, расколотый пополам или (XXX) в порядок, оставался тем же камнем, каждую крупинку которого можно было разделить на еще меньшие частички. До какого

предела можно проводить такое деление и существует ли вообще такой предел?

Левкипп (ок. 500-440 гг. до н.э.) первым задался вопросом, можно ли каждую часть материи, как бы мала она ни была, разделить на еще более мелкие части. Левкипп считал, что в итоге такого деления можно получить настолько малую частицу, что дальнейшее деление станет невозможным.

Демокрит (ок. 470-360 гг. до н.э.) развил эту мысль своего учителя. Он называл эти крошечные частички ατομος – «неделимые», и введенный им термин унаследовали и мы. Учение о том, что материя состоит из мельчайших частиц и что деление материи возможно лишь до известного предела, получило называние атомистики, или атомистической теории. Демокриту казалось, что атомы каждого элемента имеют особые размеры

форму, и что именно этим объясняются различия в свойствах элементов. Реальные вещества, которые мы видим и ощущаем, представляют собой соединения атомов различных элементов

изменив природу этого соединения, можно одно вещество превратить в другое.

Атомистическая теория оставалась не популярной в течение двух тысячелетий после Демокрита, о ней почти никто не вспоминал.

все-таки атомистическая концепция полностью не исчезла. Древнегреческий философ Эпикур (ок. 342-270 гг. до н.э.) использовал атомизм в своем учении. Одним из его приверженцев был древнеримский поэт Тит Лукреций Кар (ок. 95-55 гг. до н.э.). Он изложил атомистические взгляды Демокрита и Эпикура в поэме «О природе вещей».

Поэма Лукреция сохранились полностью и донесла атомистическое учение до тех дней, когда в борьбу вступили новые научные методы, которые и привели атомизм к окончательной победе.

Первым значительным представителем Греко-египетско-го khemeia, имя которого дошло до нас, был Бол из Менде (ок. 200 г. до н.э.), города в дельте Нила. В своих работах Болос использовал имя демокрита, и поэтому его называют «Болос-Де-мокрит», или иногда «Псело-Демокрит». Болос посвятил себя одной из важнейших задач khemeia – превращению одного металла в другой, и в частности превращению свинца или железа в золото (XXX).

Болос в своих работах приводил подробные описания методов получения золота, но это не было мошенничеством. Можно, например, сплавить медь с металлическим цинком и получить латунь – сплав желтого цвета, т.е. цвета золота. Для древних исследователей изготовление металла цвета золота и означало изготовление самого золота.

Приблизительно в 300 г. н.э. египтянин Зосиа написал энциклопедию – 28 книг, которые охватывали все знания по khemeia, собранные за предыдущие пять или шесть веков. Цен-ность этой энциклопедии не слишком велика. В ней можно найти любопытные сведения, в частности, о мышьяке. Зосима описал методы получения ацетата свинца: он указал, что у этого ядовитого соединения сладковатый вкус (называние «свинцовый сахар» дошло до наших дней).

Арабские халифы начали покровительствовать наукам, и в VIII-IX вв, появились первые арабские химики. Арабы преобразовали словов khemeia в al-khemeia. Европейцы позднее заимствовали это слово у арабов, и в результате в европейских языках, появились термины «алхимия» и «алхимик». Термин «алхимик» сейчас употребляют, когда говорят о периоде истории химии, охватывающем около двух тысячелетий, начиная с

300 г. и до 1600 г.

В 670 г. корабли арабского флота, осаждающего Константинополь (самый большой и сильный город христианского мира), были сожжены «греческим огнем» – химической смесью, образующей при горении сильное пламя, которое нельзя погасить водой. По преданию, эту смесь изготовил занимающийся khemeia Каллиний, который бежал из своего родного Египта.

После 650 г. развитие Греко-египетской алхимии полностью контролировалось арабами, и так продолжалось в течение пяти веков. Следы этого периода сохранились в ряде химических терминов с арабскими корнями: ХХХ (перегонный куб), ХХХ

(щелочь), alcohol (спирт), carbay (ХХХ бутыль), ХХХ (ХХХ),

ХХХ (цирконий) и др.

Самым талантливым и прославленным арабским алхи-миком был Джабир ибн Хайн (721-815), ставший известным в Европе позднее под именем Гебер. Он жил во времена наивыс-шего расцвета арабской империи (при Гарун аль-Рашиде, про-славленном в «Тысяче и одной ночи»). Многочисленные труды Джабира написаны достаточно понятным языком. Он описал нашатырный спирт и показал, как приготовить свинцовые бе-лила. Он перегонял уксус, чтобы получить уксусную кислоту

– самую сильную из известных в то время кислот. Ему удалось получить слабый раствор азотной кислоты.

Джабир изучал возможность трансмутации металлов, и эти его исследования показали сильнейшее влияние на последующие поколения алхимиков. Джабир полагал, что ртуть является особым металлом, так как благодаря своей жидкой форме она содержит очень мало примесей. Столь же необычными свойс-твами обладает и сера: она способна воспламеняться (и к тому же она желтая, как и золото). Джабир считал, что все остальные семь металлов образуются из смеси ртути и серы, «созревающей» в недрах земли. Труднее всего образуется золото – наиболее совершенный металл. Поэтому, чтобы получить золото, необходимо найти вещество, ускоряющее «созревание» золота.

Арабский алхимик АрРази (865-925), ставший известным в Европе под именем Разес, занимался медициной и алхимией. Он завоевал почти такую же известность, как и Джабир, описал методику приготовления гипса и способа наложения гипсовой повязки для фиксации сломанной кости, изучил и описал металлическую сурьму. Джабир рассматривал серу как принцип горючести, ртуть как принцип металличности, АрРази доба-вил к этим двум принципам третий – принцип твердости, или соль. Летучая ртуть и воспламеняющаяся сера образовывали твердые вещества только в присутствии третьего компонента

– соли.

Самым знаменитым врачом был бухарец Ибн-Сина (ок. 980-1037), гораздо более известный под латинизированным именемАвиценна. Авиценна единственный их алхимиков не верил в возможность получения золота из других металлов.

В 1096 г. начался первый крестовый поход: христиане начали отвоевывать у мусульман захваченные ими земли. В 1099 г. христиане завоевали Иерусалим. Почти два столетия на побережье Сирии просуществовало христианское государство. Произошло некоторое смешение культур, и горсточка христиан, возвратившихся в Европу, познакомила европейцев с достижениями арабской науки.

Европейцы узнали, что арабы – обладатели книжных сокро-вищ: переведенных ими трудов греческих ученых, например Аристотеля, и сочинений своих ученых, например Авиценны.

Несмотря на сопротивление арабов, не желавших передавать столь ценные труды своему заклятому смертельному врагу, на-чались попытки перевода этих трудов на латинский язык. Это-му начинанию всячески способствовал французский ученый Герберт (ок. 940-1003), который в 999 г. стал папой Сильвестрой

II.

Первым видным европейским алхимиком был Альберт Больштедский (ок. 1193-1280), более известный как Альбер-тус Магнус (Альберт Великий). Он тщательно изучил работы Аристотеля, и именно благодаря ему философия Аристотеля приобрела особе значение для ученых позднего средневековья и начала Нового Вермени. Альберт Великий в описаниях своих алхимических опытов дает настолько точную характеристику мышьяку, что ему иногда приписывают открытие этого вещес-тва, хотя, по крайней мере в примесях, мышьяк был известен алхимикам и до него.

Современником Альберта Великого был английский уче-ный монах Роджер Бэкон (1214-1292), который известен сегодня прежде всего благодаря своему четко выраженному убеждению, что залогом прогресса науки являются экспериментальная ра-бота и приложение к ней математических методов. Бэкон попытался написать всеобщую энциклопедию знаний и в своих работах дал первое описание пороха.

Сочинения средневековых алхимиков – испанского врача Арнольда из Виллановы (ок. 1240-1311) и Раймунда Луллия (1235-1313), современников Бэкона, пронизаны мистическим духом алхимии (правда, сомнительно, что они в действительности были авторами этих работ). Имя самого видного из средневековых алхимиков осталось неизвестным: он подписывал свои труды именем Джабира, арабского алхимика, жившего за шесть веков до него. Этот «Пссадо-Джабир) был, вероятно, ис-панцем и жил в XIV в. Псевдо-Джабир первым описал серную кислоту – одно из самых важных соединений сегодняшней хи-мии (после воды, воздуха, угля и нефти). Он также описал, как образуется сильная азотная кислота. Серную и сильную азот-ную кислоты получили из минералов, в то время как все ранее известные кислоты, например, уксусную кислоту, получила из веществ растительного происхождения.

Открытие сильные минеральных кислот было самым важным достижением химии после успешного получения железа из руды примерно за 3000 лет до того. Используя сильные минеральные кислоты, европейские химики смогли осуществить многое новые реакции и смогли растворить такие вещества, которые древние греки и арабы считали нерастворимыми (у греков и арабов самой сильной кислотой была уксусная).

Если бы золото перестало быть редким металлом, оно известно бы обесценивалось. Но, увы, такова человеческая природа

– открытие минеральных кислот не произвело впечатления, а поиски золота продолжались.

Шло время, и алхимия после многообещающего начала стала вырождаться в третий раз (первый раз у греков, второй – у арабов). Поиск золота стал делом многих мошенников, хотя и великие ученые даже в просвещенном XVII в. (например, Бойль и Ньютон) не смогли устоять от соблазна попытаться добиться успеха на этом поприще.

В этом же «веке открытий» немецкий изобретатель Иоганн Гуттенберг (ок. 1397-1468) изобрел первый печатный станок с подвижными литерами, собирая которые в текст можно было напечатать любую книгу. Впервые в истории стало возможным выпускать дешевые книги и в достаточном количестве. Одной из первых была напечатана поэма Лукреция, благодаря которой в Европе широко распространилось атомистическое учение. С изобретением книгопечатания непопулярные взгляды не исчезли только потому, что никто не хотел взять на себя труд по переписке таких книг.

Бауэр, более известный под именем Агриколы (что в пере-воде с латинского означает «крестьянин»), интересовался минералогией и ее возможной связью с медициной. В своей книге

«О металлургии» (De Re Metallica»), изданной в 1556 г., Агрикола систематизировал практические знания, почерпнутые им у современных ему рудокопов.

Эта книга, написанная понятным языком, с прекрасными иллюстрациями шахтных устройств сразу же стала популярной

считается классической работой и в наше время. Это самая значительная работа по химической технологии, появившаяся до 1700 г.; со времени ее издания минералогия была признана как наука.

Фон Гогенгейм вошел в историю под выбранным им самим именем Парацельс, т.е. «превосходящий Цельса». Цельс – древнеримский ученый, писавший о медицине. Его труды незадолго до того напечатанные, оказались (благодаря Парацельсу) предметом чрезмерного и необоснованного поклонения.

Парацельс, как и Авиценна, считал, что основная задача алхимии – не поиски путей получения золота, а изготовление лекарственных средств. До Парацельса в качестве таковых использовались преимущественно растительные препараты, но Парацельс сам не верил в эффективность лекарственных средств, приготовленных из минералов. Несмотря на свое негативное отношение к идее трансмутации, Парацельс был ал-химиком старой школы. Он принимал древнегреческое учение о четырех элементах-стихиях и учение арабов о трех элементах-принципах (ртуть, сера и соль), искал эликсир жизни (и даже утверждал, что нашел его). Парацельс был уверен, что он открыл металлический цинк.

Немецкий врач алхимик Андрей Либау (ок. 1540-1616), известный под латинизированным именем Либавна, опубликовал в 1597 г. «Алхимию» – первый в истории учебник химии.

Либавий первым описал приготовление соляной кислоты, тетрахлорила олова, сульфата аммония и «царской водки» (aqua regia) – смеси азотной и соляной кислот, получившей свое название из-за способности растворять золото. Либавий считал, что минеральные вещества можно опознать по форме крис-таллов, полученных после испарения раствора. Тем не менее он был уверен, что превращение металлов в золото возможно

открытие способа изготовления золота явится венцом химической науки, хотя и он соглашался с Парацельсом в том, что основная задача алхимии – служить медицине. В своем труде, написанным четким ясным языком, Либавий яростно атаковал

туманные теории, которые он называл «парацельсианскими». Наиболее видным представителем нового направления в химии был немецкий химик Иоганн Рудольф Глаубер (1604-1668). Врач по образованию, он занимался разработкой и совершенствованием методов получения соляной кислоты воздействием серной кислоты на поваренную соль. Тщательно изучив остаток, получаемый после отгонки кислот (сульфат натрия), Глаубер установил, что это вещество обладает сильным слабительным действием. Он называл это вещество «удивительной солью» (sal mirabile) и считая его панацеей, почти эликсиром жизни. Современники Глаубера называли эту соль глауберовой, и это название сохранилось до наших дней. Глаубер занялся изготовлением этой соли и ряда других, по его мнению цен-

ных лекарственных средств и достиг на этом поприще успеха.

XVII в. значение алхимии неуклонно уменьшалось, а в XVIII в. она постепенно стала тем, что мы сегодня называем химией.

Химическая наука в определенном отношении все-таки отставала от других областей знания. Значение количественных изменений и необходимость математической обработки данных были уяснены еще в древние времена.

Итальянский ученый Галилео Галилей (1561-1642), изучавший в 90-х годах XVI в. падение тел, первым показал необходимость тщательных изменений и математической обработки данных физического эксперимента. Результаты его работ почти столетие спустя привели в важным выводам английского уче-ного Исаака Ньютона (1642-1727).

химии переход от простого качественного описания к тща-тельному количественному измерению был осуществлен лишь столетие спустя, после открытий Ньютона. Ньютон оставался приверженцем алхимии и страстно искал рецепт превращения металла в золото.

Количественные методы Галилея и Ньютона очень трудно приложить к химии. Ведь для этого необходимо результаты хи-мических опытов представить таким образом, чтобы из можно было подвергнуть математической обработке. В своей работе фламандский врач Ян Баптист Ван Гельмонт (1579-1644) выра-щивал дерево в заранее отмеренном количестве почвы, куда сис-тематически добавлял воду, в систематически тщательно взвешивал дерево, применял измерение и в химии, и в биологии.

Ван Гельмон первым их химиков обратил внимание на пары, образующиеся в процессе некоторых реакций, и начал их изучать. В частности, он нашел, что на воздух похожи и пары, образующиеся при горении дерева, хотя ведут себя они несколько иначе. Ван Гельмон назвал эти пары «хаосом», но, согласно фламандскому фонетическому строю, это слово произносится как газ. Так называют воздухоподобные вещества и в наше время.

Газ, полученных при горении дерева и изученный им с осо-бой тщательностью, он называл «лесной газ» (gas sylvertre). Сегодня мы называем этот газ диоксидом углерода. При изучении газа как простейшей формы материи, впервые была использована техника точных изменений, т.е. количественного исследования явлений, которая и послужила столбовой дорогой в мир современной химии.

1643 г. итальянский физик Эванджелиста Торричелли (1608-1647) сумел доказать, что воздух оказывает давление. Торричелли доказал, что воздух может поддерживать столбик ртути выстой в 28 дюймов. Так был изобретен барометр. После этого открытия газы стали казаться менее загадочными. Как выяснилось, подобно жидкостям и твердым веществам, они имеют вес и от жидкостей и твердых веществ отличаются главным образом гораздо меньшей плотностью.

Немецкий физик Отто фон Герике (1602-1686) убедительно доказал, что атмосферный воздух имеет вес. Герике изобрел воздушный насос, при помощи которого воздух выкачивали из сосуда, так что давление воздуха снаружи сосуда становилось больше, чем внутри.

Ирландский химик Роберт Бойль (1627-1691) обнаружил, что объем данной массы воздуха обратно пропорционален давлению.

Французский химик Эдм Мариотт (1630-1684), независимо от Бойля открывший этот закон в 1676 г., особо подчеркивал, что такая зависимость объема от давления наблюдается только при постоянной температуре. По этой причине закон Бойля в континентальной Европе часто называют законом Мариотта.

отличие от твердых веществ и жидкостей воздух, как на-блюдали еще в древности, а Бойль в свое время наглядно дока-зал, легко сжимается. Объяснить это можно, только приняв, что воздух состоит из мельчайших атомов, разделенных пустым пространством. Сжатие воздуха пустого пространства между ними.

Если газы состоят из атомов, то вполне можно допустить, что жидкости и твердые вещества также состоят из атомов. Например, как испаряется вода? Если воду нагревают, она кипит, и при этом образуется пар. Водяной пар имеет физические свойства воздухоподобного вещества, и, следовательно, вполне естественно предположить, что он состоит из атомов. Но если вода состоит из атомов, будучи в газообразной форме, то почему она не может состоять из атомов, находясь в жидком или твердом (в виде льда) состоянии? А если это справедливо для воды, то почему не может быть справедливо для всех видом материи?

Впервые за свою двухтысячелетнюю историю атомизм начал завоевывать приверженцев, число которых быстро росло (например, к атомизму пришел Ньютон).

Ко времени начала научной деятельности Бойля термины «алхимия» и «алхимик» почти исчезли из научной литературы. Не удивительно, что Бойль опустил первый слог слова алхимик» в назывании своей книги «Химик-скептик» (The Sceptical Chymist»), опубликованный в 1661 г. С тех пор наука стала называться химией, а работающие в этой области – химиками.

Бойль не принимал утверждения древних философов, считавших, что элементы мироздания можно установить умозрительно. Установить, что предполагаемый элемент действительно является элементом, можно только с помощью эксперимента. Если вещество можно разложить на более простые компоненты, следовательно, оно не является элементом, а полученные более простые вещества могут представлять собой элементы или по крайней мере могут считаться таковыми до тех пор, пока химики не научатся разлагать и их на более простые вещества. Только в XX столетии стало возможным установить природу элементов не в условном плане.

Тот простой факт, что Бойль добивался эксперименталь-ного подхода к определению элементов (подхода, который в конечном счете и был принят), не означал, что он знал о су-ществовании различных элементов. Вполне могло оказаться, что экспериментальный подход подтвердил бы существование «греческих элементов»: огня, воздуха, воды и земли.

Бойль, например, был убежден в обоснованности воззрений алхимиков, считавших, что металлы не являются элементами и что одни металлы можно превратить в другие. Он считал, что

получив таким образом золото, удастся подтвердить атомную структуру материи.

Однако в этом Бойль ошибался: металлы оказались элементами. Один из элементов едва не открыл сам Бойль. В 1680 г. он выделил фосфор из мочи. Однако лет на десять до него то же самое сделал немецкий химик Хенник Бранд (? – после 1710 г.) которого иногда называют «последним алхимиком». Он открыл фосфор совершенно случайно во время поисков философского камня, который собирсля найти в моче. Правда, ряд литературных источников свидетельствует, что способ получения фосфора, вероятно, знали еще арабские алхимики XII в.

К числу открытий XVII в. имевших особе значение для развития химии, следует отнести открытие существования давления столба атмосферного воздуха, возможности использования этого давления и возможности создания вакуума.

Конструкция паровой машины была значительно усовершенствована шотландским механиком Джеймсом Уаттом (1736-1819), который и считается создателем универсальной паровой машины.

Появление паровой машины ознаменовало собой начало промышленной революции: человек получил машину, кото-рая, казалось могла переделать всю таяжелую работу на свете.

Не совсем обычное использование огня в паровой маши-не возродило у химиков интерес в процессу горения. Почему одни предметы горят, а другие не горят? Что представляет собой процесс горения? По представлениям древних греков все, что способно гореть, содержит в себе элемент огня, который в соответствующих условиях может высвобождаться. Алхимики придерживались примерно той же точки зрения, но считали, что

ХХХ

Нет страниц 19-22

ХХХ

«окалину» (оксид ртути). Пристли клал немного окалины

пробирку и нагревал ее, фокусируя на ней с помощью линзы солнечные лучи. Окалина при этом вновь превращалась в ртуть, и в верхней части пробирки появлялись блестящие шарики металла. При разложении окалины выделялся газ с весьма необычными свойствами. Горючие вещества горели в этом газе

быстрее и ярче, чем на воздухе. Тлеющая лучина, брошенная в сосуд с этим газом, вспыхивала ярким пламенем.

Пристли пытался объяснить это явление, используя теорию флогистона. Поскольку горючие вещества горели в этом газе весьма ярко, то они должны были очень легко выделять флогистон. Чем это объяснить? Как следует из теории флогистона, воздух легко поглощает флогистон, но до определенного предела, после чего горение прекращается. В открытом Пристли газе горение шло лучше, чем в воздухе, и он решил, что этот газ совсем не содержит флогистона, Пристли называл открытий им газ «дефлогистированным воздухом». (Однако через несколько лет его переименовали в кислород: этим названием мы пользуемся и сегодня.

«Дефлогистированный воздух» Пристли казался своего рода антиподом «флогистированного воздуха» Резерфорда. В последнем газе мыши умирали, тогда как в первом были весьма деятельными. Пристли сам попробовал подышать «дефлогис-тированным воздухом» и почувствовал при этом себя «легко и свободно».

Однако в открытии кислорода и Резерфорд и Пристли опередил шведский химик Карл Вильгельм Шееле (1742-1786) – представитель плеяды химиков, которые вывели Швецию в XVIII в. на передовые позиции науки.

Кронстедт (1722-1765) при изучении минералов впервые применил паяльную трубку. Это была длинная постепенно сужающаяся трубка, из узкого конца которой выходила струя сжатого воздуха.

Благодаря использованию новых технических приемов, подобных анализу в пламени паяльной трубки, химикам удалось накопить достаточно много данных о минералах. Исходя из этих данных, Кронстедт вполне справедливо полагал, что минералы следует классифицировать не только в соответствии с их внешним видом, но и в соответствии с их химической структурой. В 1758 г. он выпустил книгу «Система минералогии», в которой детально описал новую систему классификации.

Шведский минеролог Торберн Улаф Бергман (1735-1784) развил теорию, объясняющую, почему одно вещество реагирует с другим, но не реагирует с третьим. Он же предположил, что между двумя веществами существует «сродство» (affinities), и составил тщательно выверенные таблицы различных величин сродства. Эти таблицы пользовались широкой известностью при жизни их создателя и пережили его на несколько десятилетий.

Шееле открыл ряд кислот растительного и животного происхождения, в том числе винную, лимонную, бензойную, яб-лочную, щавелевую, галловую, молочную, мочевую, а также та-кие минеральные кислоты, как молибденовая и мышьяковая.

Шееле получил и изучил три сильно ядовитых газа: фторид водорода, сульфид водорода и цианид водорода. (Предполагают, что его ранняя смерть явилась результатом медленного отравления химикалиями, так как он имел обыкновение пробовать на вкус те вещества, с которыми работал).

Наиболее важные его открытия – получение кислорода и азота (соответственно в 1771 и 1772 гг.). Шееле получал кислород, нагревая вещества, непрочно его удерживающие. Он нагревал, тот самый красный оксид ртути, которым несколько лет спустя воспользовался Пристли.

Шееле подробно описал свои опыты по получению и столь же подробно описал свойства «огненного воздуха» (так он называл кислород), но из-за небрежности его издателя эти описа-ния не появлялись в печати до 1777 г.

К концу XVIII в. был накоплен большой экспериментальный материал, который необходимо было систематизировать в рамках единой теории. 5 июля 1748 г. М.В. Ломоносов впервые сформулировал закон сохранения материи и движения. В письме к Л.Эйлеру он писал: «Все встречающиеся в природе изменения происходят так, что если к чему-либо прибавилось, то это отнимается у чего-то другого. Так, сколько материи при-бавляется какому-либо телу, столько же теряется у другого… Так как это всеобщий закон природы: То он распространяется и на правила движения, столько же теряет он своего движения, сколько сообщает другому, им двинутому».

В 1756 г. М.В.Ломоносов, повторив опыт Р.Бойля, раньше А.Лавуазье высказал мысль, что увеличение массы металлов при обжигании следует приписать присоединению частиц воздуха И в отличие от своих современников он исключил «огненную материю» из числа химических агентов.

Создателем такой теории французский химик Антуан-Ло-ран Лавуазье (1743-1794). Лавуазье понял важность точного изменения. Первая значительная работа (1764 г.) быа посвящена изучению состава минерального гипса. Нагревая этот минерал, Лавуазье удалял из него воду и определял количество полученной таким образом воды.

Даже в 1770 г. ряд ученых придерживались старого опреде-ления элементов и утверждали, что трансмутация возможна, поскольку воду, например, при длительном нагревании можно превратить в землю.

Лавуазье решил проверить возможность превращения воды экспериментальным путем. С этой целью он в течение 101 дня кипятил воду в сосуде, в котором водяной пар конденсировался и возвращался обратно в колбу. Он взвешивал и сосуд и воду и до и после нагревания.

Осадок при этом действительно появился, но вес воды не изменился. Осадок образовывало выщелоченное стекло, осаждавшееся в виде твердых пластинок. Этот пример наглядно показывает. Что простое наблюдение может привести к ошибочным вывода, тогда как количественное измерение позволяет установить истинные причины явления.

Вопрос о том, что такое процесс горения, интересовал всех химиков XVIII в. В 1772 г. Лавуазье в складчину с другими химиками приобрел алмаз. Он поместил этот алмаз в закрытый сосуд и нагревал до тех пор, пока алмаз не исчез. При этом образовался углекислый газ. Таким образом было убедительно доказано, что алмаз состоит из углерода и, следовательно, ал-маз ближе всех других веществ к углю.

Лавуазье был не волне доволен полученными результатами. При соединении воздуха с металлом образовывалась окалина, а при соединении с деревом – газы. Но почему в таком взаимодействии участвовал не весь воздух, а только примерно пятая часть его?

В октябре 1774 г. Париж посетил Пристли и рассказал Лавуазье о своем открытии «дефлогистированного воздуха». Лавуазье в 1775 г. подготовил статью, в которой утверждал, что воздух является не простым веществом, а смесью двух газов. Одну пятую воздуха составляет «дефлогистированный воздух» Пристли (Лавуазье, к сожалению, оспаривал у Пристли честь открытия кислорода). И именно эта часть воздуха соединяется с горящими или ржавеющими предметами, переходит из руд в древесный уголь и необходима для жизни.

Второй газ, составляющий четыре пятых воздуха («флогис-тированный воздух» Резерфорда), был признан совершенно самостоятельным веществом. Этот газ не поддерживал горения, мыши в нем гибли. Лавуазье называл его азотом – безжизненным. Позднее азот был переименован в цитроген, что в переводе с латинского означает селитрообразующий, поскольку выяснилось, что азот является составной частью распространенного минерала селитры.

Лавуазье был убежден (и, надо сказать, совершенно справедливо), что жизнь поддерживается процессом, сходным с процессом горения: ибо мы вдыхаем воздух, богатый кислородом и бедный углекислым газом, а выдыхаем воздух, бедный кислородом и значительно обогащенный углекислым газом. Он и его коллега Пьер Симно де Лаплас (1749-1827), впоследствии известный астроном, попытались измерить количество вдыхаемого животным кислорода и выдыхаемого ими углекислого газа. Ре-зультаты оказались озадачивающими – часть вдыхаемого кис-лорода не превратилась в выдыхаемый углекислый газ.

Лавуазье, узнав об этом опыте, называл газ Квендиша водородом («образующим воду») и отметил, водород горит, соединяясь с кислородом, и, следовательно, вода является соединением водорода и кислорода. Лавуазье также полагал, что пищевая субстанция и живая ткань представляют собой множество различных соединений углерода и водорода, поэтому при вдыхании воздуха кислород расходуется на образование не только углекислого газа из углерода, но и воды из водорода. Таким образом Лавуазье объяснил, куда расходуется та часть кислород, которую он никак не мог учесть в своих первых опытах по изу-чению дыхания.

Русский химик Михаил Васильевич Ломоносов (1711-1765) еще в 1756 г., т.е. почти за двадцать лет до работ Лавуазье по горению, отказался от теории флогистона и предположил, что при горении вещества соединяются с частью воздуха. Ломоносов имел почти современные взгляды на теорию атомов и теорию теплоты. Опередив, таким образом, свое время почти на сто пятьдесят лет.

По названиям соединений, предложенных системой химической номенклатуры, можно было определить те элементы, из которых оно состоит. Например, оксид кальция состоит из кальция и кислорода. Четкая система приставок и суффиксов

была разработана таким образом, что стало возможным судить о соотношении входящих в состав веществ элементов. В то же время хлорат калия содержит больше кислорода, чем хлорит калия, в перхлорате калия содержание еще выше, тогда как хлорид калия совсем не содержит кислорода.

1789 г. Лавуазье опубликовал книгу «Элементарный курс химии». Это был первый учебник по химии в современном понимании. Лавуазье только в двух случаях допустил несомненные ошибки. Это касалось «света» и «теплорода» (тепла), которые, как стало очевидно спустя несколько десятилетий, представляют собой вовсе не материальные субстанции, а формы энергии.

Германии одним из первых приверженцев Лавуазье стал Мартин Генрих Клапорт (1743-1817). Среди немецких ученых считалось очень патриотичным придерживаться теории флогистона, поскольку автор теории Шталь был немцем. Поэтому выступление Клапорта в поддержку теории Лавуазье произвело сильное впечатление. Клапорт внес свой вклад в открытие элементов: в 1789 г. он открыл уран и цирконий.

Успех Лавуазье показал химикам, что применение количественных измерений может помочь понять суть химических реакций. Метод количественных измерений был использован, в частности, при исследовании кислот.

Реакции нейтрализации заинтересовали немецкого химика Иеремию Веньямина Рихтера (1762-1807). Он измерил точные количества различных кислот, необходимых для нейтрализации определенных количеств того или иного основания, и наоборот. Результаты измерений показали, что, проводя реакцию нейтрализации, нельзя пользоваться приемами повара, который в соответствии со своим вкусом может увеличить или уменьшить количество того или много компонента: в данном случае необходимы определенные и постоянные количества веществ.

Рихтер изложил свои взгляды в книге «Стехиометрия, или искусство измерения химических элементов».

Таким образом, Рихтеру принадлежит формулировка зако-на эквивалентов.

Бертолле придерживался второй точки зрения и считал, что соединение, состоящее из элементов Х и У, содержит большее количество Х, если при получении этого соединения использовался большой избыток Х.

Французский химик Жозеф Луи Пруст (1754-1826), который работал в Испании, придерживался противоположного мнения. С помощью тщательных анализов, Пруст в 1799 г. показал, например, что карбонат меди характеризуется определенным весовым соотношением меди, углерода и кислорода вне зависимости от того, каким способом эта соль получена в лаборатории или каким способом выделена из природных источников. Соединение всегда содержит 5,3 части меди, 4 части кислорода и 1 часть углерода.

Почему закон постоянства состава всегда должен быть справедлив? Почему какое-то соединение всегда должно содержать 4 части Х и 1 часть У, и почему оно не может содержать, напри-мер, 4,1 или 3,9 части Х и 1 часть У? Если допустить, что мате-рия является сплошной (а не дискретной), то понять это труд-но. Почему элементы не могут смешиваться в несколько иных пропорциях?

Если признать атомное строение материи, то из этого положения закон постоянства состава вытекает как естественное следствие. Более того, поскольку справедливость закона постоянства состава – неоспоримый факт, то, следовательно, атомы действительно являются неделимыми частицами.

Английский химик Джон Дальтон (1766-1814) первооткрыватель закона кратных отношений и создатель основ атомной теории. Он обнаружил, что два элемента могут соединяться друг с другом в различных соотношениях, но при этом каждая новая комбинация элементов представляет собой новое соединение.

В 1803 г. Дальтон обобщил результаты своих наблюдений и сформулировал важнейший закон химии – закон кратных отношений.

Если монооксид углерода образуется в результате сочетания одного атома углерода с одним атомом кислорода, то в этом соединении соотношение весовых частей углерода и кислорода должно быть равно 3:4. В диоксиде же углерода, состоящем из одного атома углерода и двух атомов кислорода, оно должно быть 3:8.

Поскольку было найдено, что элементы соединяются в кратных отношениях, следовательно, соединения различаются по составу на целые атомы. Разумеется, предполагаемые различия в составе и закон кратных отношений справедливы лишь при условии, что материя действительно состоит из крошечных неделимых атомов.

Выдвигая новую версию атомистической теории, опиравшуюся на законы постоянства состава и кратных отношений, Дальтон как дань уважения Демокриту сохранил термин «атом» и называл так считавшиеся в то время неделимыми мельчайшие частицы, составляющие материю.

В 1808 г. он опубликовал труд «Новая система химической философии», в которой изложил атомистическую теорию уже более подробно.

Атомистическая теория нанесла последний удар по бытовавшим еще представлениям о возможности взаимных переходов элементов-стихий. Стало очевидным, что различные металлы состоят из атомов различных видов, и, поскольку атомы считались в то время неделимыми и незаменяемыми, бесполезно было надеяться, что когда-нибудь удастся атом свинца превратить в атом золота.

Например, 1 часть (по весу) водорода соединяется с 8 частями кислорода, образуя воду. Если молекула воды состоит из одного атома водорода и одного атома кислорода, то, следовательно, атом кислорода в 8 раз тяжелее атома водорода. Если условно принять, как это и делал Дальтон, вес атома за 1, то вес атома кислорода при этом соответственно равен 8.

Рассуждая таким образом, Дальтон составил первую табли-цу атомных весов. Атомный вес – это не вес как сила и вовсе не масса, а число, выражающее отношение главным образом масс атомных ядер. Процесс взвешивания, имевший место при определении атомных весов, был процессом сравнения масс. Эта таблица, хотя, вероятно, и была самой важной работой Дальтона, в ряде аспектов оказалась совершенно ошибочной. Основное заблуждение дальтона заключалось в следующем. Он был твердо убежден, что при образовании молекулы атомы одного элемента соединяются с атомами другого элемента попарно. Исключения из этого правила Дальтон допускал лишь в крайних случаях.

Тем временем накапливались данные, свидетельствующие о том, что подобное сочетание атомов «один к одному» отнюдь не является правилом. Противоречие проявилось, в частности, при изучении воды, причем еще до того, как дальтон сформулировал свою атомную теорию.

Бенджамин Франклин (1706-1790), великий американский ученый, выдающийся государственный деятель и дипломат, в сороковых годах XVIII в. выдвинул новую гипотезу. Он предположил, что существует единый электрический флюид и что вид электрического заряда зависит от содержания этого флюида.

Франклин считал, что стекло содержит электрического флюида больше нормы и поэтому несет положительный заряд.

В 1800 г. итальянский физик Алессандр Вольта (1745-1827) сделал важное открытие. Он установил следующее: два куска металла (разделенные растворами, способными проводить электрический заряд) можно расположить таким образом, что по соединяющей их проволоке пойдет «ток электрических зарядов», или электрический ток.

Два английских химика – Уильям Николсон (153-1815) и Энтони Карлайл (1768-1840) продемонстрировали наличие такой обратной зависимости. Пропустив электрический ток через воду, они обнаружили, что на электропроводящих полосках металла опущенных в воду, появляются пузырьки газа. Как выяснилось, на одной из полосок выделялся водород, на другой – кислород.

Они впервые провели электролиз воды. Выделявшиеся по мере разложения воды водород и кислород они собирали в отдельные сосуды. Последующие измерения показали, что объем водорода вдвое превышает объем кислорода. Объем выделившегося водорода вдвое превысил объем кислорода, поэтому вполне естественно было предположить, что каждая молекула воды содержит два атома водорода и один атом кислорода, а не по одному атому каждого элемента, как считал Дальтон.

Результаты исследований Николсона и Карлайла были подкреплены работой французского химика Жозефа Луи Гей-Люссака (1778-1850), Гей-Люссак установил, что два объема водорода, соединяясь с одним объемов кислорода, образуют воду. Далее, он нашел, что когда газы образуют соединения, соотношение их объемов всегда представляет собой соотношение кратных чисел. В 1808 г. Гей-Люссак опубликовал сообщение об открытом им законе объемных отношений.

Используя этот закон, можно было также решить наконец, сколько атомов азота и водорода в аммиаке. После того, как было установлено, что в молекуле аммиака содержится один

атом азота и три (а не один) атом водорода, выяснилось, что атомная масса азота равна не примерно 5, а 14.

Первым, кто обратил внимание на необходимость предположения о том, что в газах равное число частиц занимает равнее объемы, был итальянский химик Амедео Авогадро (1776-1856). Поэтому предположение, выдвинутое им в 1811 г., получило название гипотезы Авогадро.

1818 г. французский химик Пьер Луи Дюлонг (1785-1838) и французский физик Алексис Терез Пти (1791-1820) определили атомный вес одного из таких элементов.

Атомный вес элемента (правда, только приблизительный) можно определить, измерив его теплоемкость. Этот метод ока-зался пригодным только для твердых элементов, да и то не для всех, и тем не менее это был шаг вперед.

Шведский химик Исис Якоб Берцелиус вслед за Далтоном внес особенно большой вклад в создание атомистической тиории. Примерно с 1807 г. Берцелиус вплотную занялся определением точного элементного состава различных соединений. Он представил столько доказательств, подтверждавших закон постоянства состава, что химики были вынуждены принять справедливость этого закона, а следовательно, и принять ато-мистическую теорию, которая непосредственно вытекала из закона постоянства состава.

Далее Берцелиус принялся за определение атомных весов более сложными и точными методами, которые были недоступны Дальтону. В этой свое работе Берцелиус использовал законы, открытые Дюлонгом и Пти, Митчерлихом и ГейЛюссаком (но подобно большинству своих современников, не воспользовался гипотезой Авгадро).

1826 г. Берцелиус опубликовал первую таблицу атомных весов. Приведенные в ней величины в основном совпадают (за исключением атомных весов двух-трех элементов) с принятыми в настоящее время. Эта таблица, опубликованная в издававшихся самим И.Берцелиусом «Годичных обзорах», вошла в историю химии как таблица 1826 г.

Существенное различие между таблицами Берцелиуса и Дальтона состоит в том, что величины, полученные Берцелиусом, в большинстве не были целыми числами.

своих расчетах Дальтон исходил из того, что атомный вес водорода равен 1, и поэтому атомные веса всех элементов

в таблице Дальтона представляют собой целые числа. Изучив составленную Дальтоном таблицу атомных весов, английский химик Уильям Праут (1785-1850) пришел в 1815-1816 гг. к мне-нию, что все элементы в конечном счете состоят из водорода и что атомные веса различных элементов различаются по той причине, что они состоят из равного числа атомов водорода. Эта точка зрения известна как гипотеза Праута.

Однако, таблица Берцелиуса, казалось, разрушила это привлекательное предположение (привлекательное потому, что, по-добно античным ученым, Праут сводил все возраставшее число элементов к одному основному веществу и, таким образом, как будто бы придавал Вселенной упорядоченность и симметрию). Однако, если принять атомный вес водорода («основы»), рав-ным 1, то атомный вес кислорода составит приблизительно 15,9 веса водорода, но едва ли можно согласиться с тем, что кисло-род состоит из 15 плюс еще 9/10 атома водорода.

следующем столетии таблицы атомных весов постоянно уточнялись, и все более очевидными становились выводы Бер-целиуса, считавшего, что атомные веса различных элементов не являются целыми числами, кратными атомному весу водорода.

шестидесятых годах XIXв. Бельгийский химик Жан Сер-вио Стас (1813-1891) определил атомные веса точнее, чем Берцелиус. В начале ХХ в. американский химик Теодор Уильям Ричардс (1868-1928), приняв все меры предосторожности (во многом надуманные), определил величины атомных весов с такой точностью, которая только возможна при использовании чисто химических методов. Исследования Стаса и Ричардса ответили на те вопросы, которые в работах Берцелиуса оставались нерешенными.

В то время, когда Ричардс проводил свои поразительно точные определения атомных весов, вновь встал вопрос о том, что следует понимать под атомных весом. И на этом этапе развития химии гипотезе Праута, как мы увидим далее, суждено было возродиться.

Поскольку, как выяснилось, атомные веса различных элементов взаимосвязаны не столь простым образом, как это ранее предполагалось, необходимо было выявить стандарт, исходя из которого можно было бы определить атомные веса элементов. Естественным казалось принять за единицу атомного веса атомные вес водорода, как это сделали Берцелиус и

Дальтон. Но при этом атомный вес кислорода выражался неудобным нецелым числом 15,9, а ведь именно кислород обычно использовался для определения соотношений элементов в различных соединениях.

Атомный вес кислорода округлили и приняли равным 16.000 (вместо 15,9). Таким образом, в качестве стандарта был принят атомный вес кислорода, равный 16, атомный вес водорода при этом оказался равным 1.008. Атомный вес кислорода служил стандартом вплоть до середины XX в.

После того, как атомистическая теория была принята, стало возможным изображать вещества в виде молекул, содержащих постоянное число атомов различных элементов. Вполне естественным было попытаться изобразить такие молекулы в виде набора маленьких кружков, представляющих собой атомы: при этом атомы каждого вида можно было изобразить кружками определенного типа.

Простым кружком Дальтон изображал атом кислорода; кружком с точкой посредине – атом водорода; кружком с вертикальной линией – атом азота; закрашенным черным кружком – атом углерода и т.д. Серу он изображал в виде кружка с буквой S, фосфор – в виде кружка с буквой P и т.д.

Берцелиус решил, что кружки излишни, достаточно лишь начальных букв. Он предложил, чтобы каждому элементу соответствовал свой особый знак, который был бы одновременно и символом элемента, и символом одиночного атома этого элемента, и в качестве такого знака предложил использовать начальную букву латинского названия элемента. В тех случаях, когда называния двух или более элементов начинались с одних и тех же начальных букв, добавлялась вторая буква названия. Так появились химические символы.

С помощью химических символов легко показать количество атомов в молекуле. Химические формулы можно объединять в химические уравнения. Чтобы уравнять правую и левую части, перед формулами исходных веществ и продуктов реакции ставят коэффициенты.

За полтора века прошедшие с того времени, когда Бойль ввел понятие «элемент», было открыто поразительно много веществ, отвечающих этому определению. Очень часто эти элементы входили в состав оксидов. В принципе под воздействием какого-либо элемента, обладающего более сильным сродством

к кислороду, атом (или атомы) кислорода может покинуть первый элемент и присоединиться ко второму. Этот метод оказал-ся эффективным. Причем часто роль второго, отнимающего кислород элемента и выполнял углерод.

Известь по своим свойствам похожа на оксид. Однако ни один из известных тогда элементов, вступая в реакцию с кислородом, не образует известь. Следовательно, известь является оксидом неизвестного элемента. Пытаясь выделить этот неизвестный элемент, известь нагревали на коксе, но при этом ничего не происходило. Ни одно другое химическое вещество также не могло «заставить» известь отдать кислород.

Английский химик Гемфри Дэви (1778-1829) решил, что если вещество нельзя разложить химическим путем, то, возможно, это удастся осуществить под воздействием электрического тока: ведь таким способом удалость разложить даже молекулу воды. Дэви только разложил воду и получил водород и кислород. Необходимо было прежде удалить воду. Однако через твердые вещества ему даже не удалось пропустить ток. Наконец, Дэви догадался расплавить соединения и пропустить ток через расплав.

6 октября 1807 г. Дэви пропустил ток через расплавленный поташ (карбонат калия) и получил маленькие шарики металла, который он назвал потассием (от английского – potaslt). Этот металл, впоследствии названный калием, оказался очень активным. Неделю спустя Дэви выделил из соды (карбоната натрия) содий (от английского – soda), впоследствии названный натрием. По своей активности, как выяснилось, натрий лишь незначительно уступает калию.

В 1808 г., пользуясь модифицированным вариантом метода Берцелиуса, Дэви выделил магний из магнезии, стронций из оксида стронция, барий из оксида бария и кальций из извести («кальций» – от латинских называний извести – calx. calcis).

Дэви также показал, что зеленоватый газ, который открыв

ший его Шееле считал оксидом, в действительности является χλωρος – желто-зеленый). Позднее Гей-Люссак сократил это

название до хлора. Дэви доказал, что соляная кислота, будучи сильной кислотой, не содержит атома кислорода в своей молекуле, и, таким образом, опроверг предположение Лавуазье, который рассматривал кислород как необходимый компонент всех кислот.

Работы Дэви по электролизу продолжил его помощник и ученик Майкл Фарадей (1791-1867), который впоследствии стал знаменитым ученым. Фарадей называл расщепление молекул под действием электрического тока электролизом. Фарадей назвал соединение или раствор, способный проводить электрический ток, электролитом; металлические стержни или пластины, помещенные в расплавленный металл или раствор, – электродами; электрод, несущий положительный заряд – ано-дом; электрод несущий отрицательный заряд – катодом.

Реально существующие частицы, благодаря которым элект-рический ток проходит через раствор или расплав, Фарадей на-зывал ионами (от греческого ιογ – идущий). Ионы, перемеща-ющиеся по направлению а аноду, он назвал анионами, ионы, перемещающиеся по направлению к катоду – катионами.

1832 г. Фарадей сформулировал следующие два закона электролиза: 1. Вес вещества, выделившегося на электроде во время электролиза, пропорционален количеству электричества, пропущенного через раствор. 2. Вес металла, выделенного данным количеством электричества, пропорционален эквивалентному весу этого металла.

Законы Фарадея, по мнению некоторых химиков, указывали на то, что электричество, как и материю, можно разложить на постоянные минимальные единицы, или, другими словами, на «атомы электричества».

Человек разделил вещества на две группы: горючие и негорючие.

Накопленные в XVIII столетии знания показали химиками, что судить о природе веществ, исходя только из их горючести или негорючести, нельзя. Вещества неживой природы могли выдерживать жесткую обработку, а вещества живой или некогда живой материи такой обработки не выдерживали. Вода кипела и снова конденсировалась в воду; железо или соль расправлялись, но остывая, возвращались в исходное состояние. В то же время, оливковое масло или сахар при нагревании (даже в условиях исключающих возможность горения) превращались в дым и гарь.

1807 г. Берцелиус предложил вещества, подобные оливковому маслу или сахару, которые типичны для живой природы, называть органическими. Вещества, подобные воде и соли, которые характерны для неживой природы, он называл неорганическими.

Химиков не переставало удивлять, что органические вещества при нагревании или каком-либо другом жестком воздействии легко превращаются в неорганические вещества. (Возможность обратного превращения, т.е. превращения неорганического ве-щества в органическое, была установлена несколько позднее). То время было временем господства витализма – учения, рассматривающего жизнь как особое явление, подчиняющееся не законам мироздания, а влиянию особых жизненных сил. За-щитником витализма веком раньше был Шталь, основатель те-ории флогистона. Сторонники витализма утверждали, что для превращения неорганических веществ в органические требуется какое-то особое воздействие («жизненная сила») которое прояв-ляется только внутри живой ткани. По этой причине неорганические соединения, например, воду, можно было найти повсюду

– в пределах и живого, и неживого мира, тогда как органические соединения, образующиеся под воздействием жизненной силы, можно найти только в живых тканях.

Первые сомнения в справедливости такого утверждения возникли после опубликования в 1828 г. работы Фридриха Велера (1800-1882), немецкого химика, ученика Берцелиуса. Ве-лера, в частности, интересовали цианиды и родственные им соединения.

Значение открытия Велера отрицать нельзя. Оно способствовало низвержению витализма и вдохновило химиков на попытки синтеза органического вещества: не будь этого открытия, химики направили бы свои усилия в другом направлении.

В 1845 г. Адольф Вильгельм Герман Кольбе (1818-1884), уче-ник Велера, успешно синтезировал уксусную кислоту, считав-шуюся в его время несомненно органическим веществом. Если синтез мочевины Велера породил сомнения относительно существования «жизненной силы», то синтез уксусной кислоты Кольбе позволил решить этот вопрос.

Французский химик Пьер Эжен К……..ен Бертло (1827-1907) в 50-е годы XIX в. синтезировал метиловый и этиловый спир-ты, Метан, бензол, ацетилен. Бертло «нарушил границу» между неорганической и органической химией, покончив с пресловутым «запретом». В дальнейшем такое «нарушение границ» ста-ло обычным.

Русский химик Константин Сигизмундович Кирхгоф (1764-1833) первым занялся детальным изучением этого вопроса. В

1812 г. ему удалось превратить крахмал, нагревая его с кислотой, сахар, который в последствии получил называние глюкозы.

1820 г. французский химик Анри Браконно (1780-1854) таким же способом обрабатывал желатину (продукт денатуриро-ванного белка) и получил глицин – азотсодержащую органи-ческую кислоту, относящуюся к той группе веществ, которые впоследствии были названы (Берцелиусом) аминокислотами. Глицин был первой из двадцати различных аминокислот, выделенных в следующем веке из природных белков.

Французский химик Мишель Эжен Шеврель (1786-1889) посвятил первую половину свой очень долгой творческой жизни изучению жиров. В 1809 г. он обрабатывал мыло (полученное нагреванием жира со щелочью) кислотой и выделил то, что мы теперь называем жирными кислотами. Позднее он показывал, что, превращаясь в мыло, жиры теряют глицерин.

Бертло в 1954 г. нагревая глицерин со стеариновой кислотой (одной из самых распространенных жирных кислот, полученных из жиров), получил молекулу, состоящую из остатка молекулы глицерина и трех остатков молекул стеариновой кислоты. Этот тристеарин, который оказался идентичен тристеарину, полученному из природных жиров, был самым сложным из синтезированных к тому времени аналогов природных продуктов.

Химик может синтезировать из продуктов неживой природы соединение, по всем своим свойствам являющееся органическим. Именно с синтезом аналогов природных продуктов связаны самые крупные достижения органической химии второй половины XIX и XX вв.

Роль химии в современном мире и ее будущее.

В атмосфере «хемифобии» надо полностью сознавать невозможность социального прогресса без развития химии и применения ее достижений для решения проблем энергетики, экологии, национальной обороны, здравоохранения, развития промышленности, сельского хозяйства.

Достаточно сказать, что 92% энергии, потребляемой сейчас обществом, мы получаем, осуществляя химические процессы. И если современная энергетика создает экологические проблемы, то виновата в этом не химия, а неграмотное или недобросовестное использование продуктов ее деятельности (хим. процессы, продукты, материалы).

Надо помнить, что химия – это не только ДДТ, дефолианты, нитраты и диоксины. Но и сахар и соль, воздух и валидол, молоко и магний, полиэтилен и пенициллин.

Все чем мы пользуемся, что носим, в чем живем, передвигаемся, чем играем, производится посредством управляемых хим. реакций.

Занятие химика – изобретение реакций, превращающих окружающие нас вещества в те, что служат удовлетворению наших нужд.

Нам необходимо иметь эффективное средство против болезни Паркинсона. Химики синтезируют карбидофу – соединение, отсутствующее в природе, но обладающее высокой терапевтической активностью.

Миллионы автомашин загрязняют атмосферу. Эту задачу отчасти помогает решить автомобильный каталитический конвертор выхлопных газов.

Сейчас насчитывается более 8 миллионов синтезированных соединений. Химия играет роль в решении проблем обеспечения людей продовольствием, одеждой и жильем, новых источников энергии, в создании возобновляемых заменителей истощающихся или редких материалов, в укреплении здоровья человека, в контроле за состоянием среды обитания и ее защите.

Поскольку все жизненные процессы вызываются хим. изменениями, знания о химических реакциях обеспечивают необходимый фундамент для постижения сущности жизни. Таким образом, химия вносит вклад в решение проблем универсальной философской значимости.

Трагедия в Бхопале (Индия) ярко показывает две стороны химии. Тысячи отравленных токсичными веществами, применяемыми для производства продуктов питания, ежегодно спасавших миллионы людей от голодной смерти.

IY.ОСНОВНЫЕ ПОНЯТИЯ ХИМИИ

ЭЛЕМЕНТАРНЫЕ (фундаментальные) ЧАСТИЦЫ

Мельчайшие объекты материи, являющиеся составными элементами атомов вещества, или же объекты, преобразующиеся в эти элементы в процессе взаимодействия друг с другом.

На данном уровне развития научных представлений о строе-нии вещества им отводится роль первичных кирпичиков миро-здания. Считается, что все многообразие окружающего нас мира построено из ограниченного числа элементарных частиц.

Элементарные частицы делят на 3 класса:

I – ФОТОН – квант электромагнитного излучения;

II – ЛЕПТОНЫ – электронное (электронное нейтрино, электрон) семейство; мюонное (мюонное нейтрино, мюон) се-мейство;

III – АДРОНЫ – мезонное (пион, каон, мезон и др.) семейс-тво; барионное (протон, нейтрон, гигерон и т.д.) семейство.

настоящее время известно несколько сотен элементарных частиц и делаются попытки их построения из небольшого числа частиц (кварков).

химии наиболее значение имеют такие элементарные частицы, как электроны, протоны и нейтроны, из которых образованы атомы химических элементов.

Электрон – первая из открытых элементарных частиц, – носитель наименьшего электрического заряда (кванта электричества q= = 1,6 –10–19 Кл. Масса покоя 9,1–10–31 кг).

Характеристики некоторых элементарных частиц

Свойство

Электрон

Протон

Нейтрон

Масса покоя в М е

1

1836

1840

Заряд

–1

+1

0

Стабильность в свободном состоянии

стабильная

стабильная

нестабильная

АТОМНЫЕ ЧАСТИЦЫ

Атомная частица представляет собой систему взаимодействующих элементарных частиц, состоящую из ядра, образованного протонами и нейтронами, и электронов.

Под атомной частицей понимается не только изолирован-ный атом, но и производные от него: атомный (одноатомный) ион, атомный радикал, атомный ион-радикал, образующиеся вследствие ионизации или возбуждения атома и способные к самостоятельному существованию (опред. временем жизни частицы, которое можно измерить физическими методами) .

ИЗОЛИРОВАННЫЙ АТОМ не имеет заряда, однако он может иметь не спаренные электроны (атомный радикал).

АТОМНЫЙ ИОН (К+, S2–) характеризуется наличием положительного или отрицательного заряда и образуется в результате удаления или присоединения электронов к атому.

АТОМНЫЙ РАДИКАЛ (Н, Cl) имеет не спаренные электро-ны в основном или возбужденном состоянии, а атомный ион– радикал (Cu2+, V2+) – заряд и не спаренные электроны.

Атомная частица является низшим, исходным уровнем хим. организации материи. Следующий уровень усложнения частиц – образование из атомных частиц различных атомных ас-социатов.

МОЛЕКУЛЯРНЫЕ ЧАСТИЦЫ

Молекулярная частица представляет собой систему взаимодействующих элементарных частиц, состоящую из атомных ядер и окружающих их внутренних и валентных электронов. Она образуется вследствие взаимодействия атомных частиц. Образование хим. связей между атомными частицами осуществляется валентными электронами.

Под молекулярной частицей понимается наименьшая совокупность атомных частиц, химически связанных в определенном порядке, способная к самостоятельному существованию, т.е. обладающая устойчивой структурой.

В зависимости от наличия или отсутствия заряда и не спа-ренных электронов молекулярные частицы классифицируют на молекулы (отсутствуют заряд и не спаренные электроны), молекулярные ионы (имеется заряд, отсутствуют не спаренные электроны) NO2, SO42–, молекулярные радикалы или биради-калы (отсутствует заряд, имеется один или два не спаренных электрона), NO2, O2, молекулярные ион–радикады (имеется заряд и не спаренные электроны)

Молекула может переходить в свободно–радикальное состояние в результате возбуждения (воздействие света, теплоты и т.д.). В редких случаях такое возбуждение приводит к обратному процессу, когда бирадикал вследствие спаривания электронов превращается в молекулу O2 h–v1 O2. (Бирадикал превращается в синглетный молекулярный кислород).

Понятие молекулы в химии введено в связи с необходимостью отличить от ее атома. Оно должно отражать число атомов, их взаимное расположение и характер связи между ними (т.е. структуру), а также исключать характерные признаки других частиц.

формулировке понятия молекулы не следует указывать такой признак, как свойства, поскольку они зависят от внешних условий, растворителя, агрегатного состояния.

Кроме того, две полимерных молекулы о высокой, но различной степенью полимеризации могут практически не отличаться по химическим и даже физическим свойствам, однако, у них своя молекулярная структура и каждая молекула индивидуальное соединение.

ряде случаев нет смысла говорить о молекулах веществ в конденсированном состоянии (ионные, атомные кристаллы).

Молекула – это способная к самостоятельному существова-нию, нейтральная по заряду наименьшая совокупность атомов, связанных вследствие химического взаимодействия в опреде-ленном порядке (т.е. обладающая определенной структурой), не имеющая, как правило, не спаренных электронов.

ПРОДУКТЫ АССОЦИАЦИИ И АГРЕГАЦИИ

Дальнейшее усложнение химической организации материи идет по пути образования более сложной совокупности взаимодействующих атомных и молекулярных частиц (молекулярных ассоциатов и агрегатов) и их комбинаций.

Образование ассоциатов не изменяет фазового состава системы, а при образовании агрегатов возникает новая фаза (чаще всего твердая). Ассоциаты существуют в газообразном состоянии и в растворах (HCOOH)2, (H2F2), агрегаты – в твердом [NaCl(тв.), Si(тв.)] или жидком (эмульсии) состоянии.

случае сильных (специфических) взаимодействий моле-кулярный ассоциат может рассматриваться как молекулярная частица, более сложная, чем исходные (NO2+ NO2+N2O4).

случаях слабых (неспецифических) взаимодействий мы имеем дело с молекулярным ассоциатом, характеризующимся наличием надмолекулярной структуры.

К атомно–молекулярным агрегатам относят молекулярные кристаллы (HgCl2(тв.)), ионные кристаллы (NаС1(тв.)), атомные кристаллы (Si(тв.)).

Молекулярные кристаллы – это агрегаты, образующиеся из молекул в результате слабых межмолекулярных взаимодействий (нафталин, J2). При нагревании они диссоциируют сравнительно легко на исходные молекулы. При увеличении размера молекул (красители, сахара, полисахариды) из-за большой энергии взаимодействия они не могут возгоняться без разложения.

Ионные кристаллы (ионные агрегаты) образуются из ионов вследствие сильных электростатических взаимодействий. Они плавятся и возгоняются, распадаясь на более простые частицы только при довольно высоких температурах. Под влиянием сольватации полярным растворителем агрегат теряет ионную структуру и переходит в раствор в виде стехиометрической смеси ионов, слабо взаимодействующих друг с другом.

Таким образом, усложнение частиц идет в направлении:

Элементарные частицы → Атомные частицы → Молекулярные частицы → Ассоциаты → Агрегаты

Под более сложными молекулярными частицами имеются

виду молекулярные ассоциаты второго и высших порядков (белки) из нескольких различных по природе надмолекулярных структур. ХХХ

По мере усложнения частиц происходит переход количества

качество, поэтому совокупность частиц отличается природой, свойствами, степенью связанности, прочностью.

Независимо от степени ассоциации или агрегации для них используются понятия: простые и сложные вещества, химические соединения, которые изображаются стехиометрической формулой вещества с указанием его модификации, агрегатного состояния, внешних условий, чистоты.

Химический элемент – вид атомов, характеризующийся определенной совокупностью свойств.

ОТНОСИТЕЛЬНОЙ М (молекулярной массой) простого или сложного вещества называется отношение массы его молекулы к 1/12 части массы атома 12С. 1/12 часть массы атома изотопа углерода 12С наз. А.Е.М.

Моль – количество вещества содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12 г. изотопа углерода 12С.

Отношение массы m вещества к его количеству ν называется молярной массой вещества

M=m /ν [г/моль]

М=кMотн , к=1.

Отношение объема, занимаемого веществом, к его количес-тву называется молярным объемом вещества.

Y. ОСНОВНЫЕ ЗАКОНЫ

Атомно–молекулярное учение (М.В.Ломоносов, 1741г.) Корпускулярная теория.

I. Все вещества в природе состоят из частичек, физически неделимых и обладающих способностью взаимного сцепления.

II. Свойства веществ зависят от свойств этих элементов. (Мелкие элементы – атомы, корпускулы – молекулы).

III. Причина различия веществ не только в составе корпускул, но и в различном расположении элементов в корпускуле.

IV. Корпускулы движутся согласно законам механики. Так как изменения веществ обуславливаются движением корпускул, то химические превращения должны изучаться методами физики и математики.

Стехиометрия – раздел химии, в котором рассматриваются весовые и объемные отношения между реагирующими веществами.

XVIII–XIX вв. Основные стехиометрические законы.

Закон Дальтона

Р = P1+P2+P3+… , где Р – общее давление;      P1,2,3… –пар-

циальное давление газов

Закон Авогадро: в равных объемах разных газов при оди-наковых условиях (P,V) cодержится одинаковое число частиц (молекул или атомов)

Na –число Авогадро ; Na= 6,02–1023

При Н.У. 1моль любого газа занимает V=22,4л

mx = nMx = Д

m1 nM1 х/1

3. Mx = Дх/1M1

Закон Бойля–Мариотта Т – const

P1 V1 = P2V2

Закон Шарля и Гей–Люссака

P – const ;

V = T

V0      T0

Объединенный закон газового состояния для 1 моля газа

PV      P0V0

T = T0 = R

Т0=273,15К      V0=22,4 л P0=101325 Па=760мм рт.ст.

Уравнение Менделеева– Клапейрона(1874г.) PV= nRT = mМ *RT

Где R–универсальная газовая постоянная=8,31 Дж/моль К= 8,314 Па =0,082 атм л/(моль К) = 62360 мм рт.ст мл/(моль К)

Закон сохранения массы: Ломоносов(1748), Лавуазье(1774)

Σ m(продуктов) = Σ m (исходных)

«Что и где убыло, то именно в другом месте и присовокупиться должно, но в той же мере».

Закон простых объемных отношений

(Гей–Люссака, 1808г)

H2 + Cl2 = 2HCl

Объемы вступающих в реакцию газов относятся между собой и к объему образующихся продуктов как небольшие целые числа.

Закон эквивалентов

m1 = Э1

m2      Э2

Э(х)=f(х)М(х),

где f(x) – фактор Х, который показ., какая доля этой частицы устанавливает 1 новую хим. связь, например, для Al+3

f(x) = 1/3

Э(х)= M(x)/3

Массы веществ взаимодействуют пропорционально их эквивалентам, или один эквивалент одного вещества взаимодействует с одним эквивалентом другого вещества.

Закон постоянства состава 1801–1807г Пруст:

Всякое чистое в–во имеет количественный и качественный состав независимо от способов его получения.

Закон кратных соотношений 1803 г. Дальтон:

Если 2 элемента образуют между собой ряд соединений, то масса одного элемента, приходящаяся на одну и ту же массу другого элемента, относятся как небольшие целые числа.

Закон сохранения массы и энергии Эйнштейна (1905 г.)

Е=mc2,

m – масса – мера энергии, Е – мера движения вещества

Девиз: «АТОМ НЕИСЧЕРПАЕМ

ТАК ЖЕ КАК ВСЕЛЕННАЯ»

ЛЕКЦИЯ 2

СТРОЕНИЕ АТОМА

План лекции

1.Строение атома (история вопроса).

2.Значение теории Бора.

3.Энергетические состояния электрона в атоме.

Атом – в переводе с греческого – неделимый. Понятие введено Демокритом как мельчайший кирпичик мироздания (V век до н.э.). Считалось, что атомы неделимы, т.е. не содержат более простых составных частей и не могут превратиться в атом другого элемента.

В конце XIX века установлен ряд фактов, свидетельствую-+98.юбщих о сложном составе атома и о возможности их взаимопревращений.

1896 г. Явление радиоактивности (Р) (radius – луч, с латинского) обнаружил у соединений урана французский физик А.Беккерель.

Р – явление испускания некоторыми элементами излуче-ния, способного проникать через вещества, ионизировать воз-дух, вызывать почернение фотопластинок.

1897 г. Английский физик Дж.Дж.Томсон открыл электрон – элементарную частицу, обладающую наименьшим существую-щим в природе отрицательным электрическим зарядом 1,6–10 -19 Кл. Масса 9,1–10-28 г., в 2000 раз меньше атома водорода.

1898 г. Мария Кюри-Склодовская и Пьер Кюри в составе урановых руд открыли 2 новых радиоактивных элемента – ПОЛОНИЙ (Polonia –Польша) и радий, которые оказались более мощными источниками радиоактивного излучения, чем уран и торий. Супруги Кюри и Э.Резерфорд установили неоднородность радиоактивного излучения: под действием магнитного поля оно разделяется на три пучка один из которых не изменяет первоначального направления, а два другие отклоняются в противоположном направлении. Не отклоняющиеся –γ–лучи – жесткое электромагнитное излучение, сходное с рентгеновскими лучами и обладающие очень большой про-никающей способностью. Отклонение других пучков под действием магнитного поля говорили о наличии электрически заэхряженных частиц.

Противоположные направления отклонений говорят о раз-ных зарядах. β –лучи – поток быстро движущихся электронов, а α –лучи дважды ионизированные атомы Не2+.

Опытом Резерфорд доказал, что α-частицы – Не2+, и что при распаде образуется Rn –радон (RaНе2+ → Rn). Изучение радиоактивности подтвердило сложность состава атомов и возможность перехода из атома одного элемента в атомы другого элемента.

1903 г. Дж.Дж.Томсон – атом состоит из положительного за-ряда, равномерно распределенного по всему объему атома, и электронов колеблющихся внутри этого заряда.

Опыт Э.Резерфорда

И–источник α излучения; К–свинцовый кубик с каналом; Э–экран, – покрытый ZnS

Этот опыт заключался в бомбардировке тонкого слоя како-го-либо вещества, в частности, металлической фольги, пучком быстро движущихся α-частиц и наблюдении, в каком направлении α-частицы рассеиваются атомами.

Сущность опыта заключается в следующем. Кусочек радия, помещенный в камеру из свинца, испускает α-частицы. Не-большое отверстие в свинцовом блоке формирует пучок α-частиц. Этот пучок проходит затем через металлическую фольгу, и прослеживаются направления, в которых α-частицы продол-жают свое движение. Направление движение можно устано-вить, применяя экран, покрытый сульфидом цинка; при ударе α-частицы о такой экран на нем появляется вспышка.

Если бы атомы, бомбардируемые α-частицами, представ-ляли бы собой плотные образования, состоящие из переме-шанных положительных и отрицательных зарядов, то все они должны были бы в какой-то мере изменить направление своего движения. Однако в действительности большинство α-частиц проходит через фольгу без отклонения.

В одном из опытов α-частицы проходили через золотую фольгу толщиной 400 нм и проникали через 1000 слоев атомов, и всего лишь одна частица из 100000 отклонялась от первона-чального направления. Это частица отклонялась очень сильно, более чем на 90°. Когда брали фольгу вдвое толще, то оказыва-лось, что примерно вдвое большее число α-частиц отклонялось под большими углами, тогда как подавляющее большинство по-прежнему проходило через фольгу без отклонения.

Эти экспериментальные данные можно понять, если допустить, что большая часть массы атома сосредоточена в очень небольшом объеме, который Резерфорд назвал атомным ядром.

Если лишь одна частица из 100000 отклоняется при прохождении через фольгу, состоящую из 1000 слоев атомов, то примерно одна частица из 100000000 будет отклоняться при прохождении через 1 слой атомов. Исходя из этого, Резерфорд заключил, что тяжелое ядро имеет площадь поперечного се-чения, составляющую только 0,00000001 часть площади по-перечного сечения всего атома, а следовательно, диаметр ядра составляет всего лишь 10-5 диаметра атома.

Такая ядерная модель атома оказалась в противоречии с за-конами классической механики и электродинамики, поскольку система неподвижных зарядов не может находиться в устойчивом состоянии. Резерфорду пришлось отказаться от статической мо-дели атома и предположить, что электроны движутся вокруг ядра по искривленным траекториям. Но в этом случае электрон будет двигаться с ускорением, в связи с чем, согласно классической электродинамике, он должен непрерывно излучать электромагнитные (световые) волны. Процесс излучения сопровождается потерей энергии, так что электрон должен в конечном итоге упасть на ядро («смерть» электрона).

Выход из создавшегося положения был найден датским физиком Нильсом Бором в 1913 году путем введения предположений, противоречащих классическим представлениям. Он высказал два постулата:

Из бесконечного множества электронных орбит, возможных

точки зрения классической механики, осуществляется в действительности только некоторые дискретные орбиты. удовлетво-ряющие определенным квантовым условиям. Электрон, находящийся на одной из этих орбит, несмотря на то, что он движется с ускорением, не излучает электромагнитных волн.

2. Излучение испускается или поглощается в виде светового кванта энергии hv при переходе из одного стационарного состояния в другое. Величина светового кванта равна разности энергий тех стационарных состояний, между которыми совершаются квантовый скачок энергии электрона

hv = Ек – Еm

К этим двум постулатам Бор добавил квантовое условие:

J = m Vk rk = kh/2 ,

где Vr – скорость электрона на k-ой орбите, J – момент количества движения электрона, rk – радиус орбиты.

Эту планетарную модель Бора нельзя, конечно, считать серьезной теорией. Однако она хорошо согласуется с опытными данными для атома водорода, т.к. дала количественное объяснение спектра атома водорода, и это было большим успехом новых идей.

Существование дискретных энергетических уровней атома подтвердили опыты Герца в 1914 году.

Теория Нильса Бора позволяет вычислить возможные частоты излучения, способного испускаться или поглощаться атомом, т. е. рассчитывать спектр атома водорода.

ПОСТУЛАТЫ БОРА противоречат положениям классической механики и электродинамики. Электрон может вращаться по любым орбитам и должен излучать при движении по круговой орбите.

Расчет спектра простейшего атома – атома водорода, выполненный Бором, дал блестящие результаты: вычисленное положение спектральных линий в видимой части спектра превосходно совпало с их действительным местоположением в спектре. При этом оказалось, что эти линии соответствуют переходу электрона с более удаленных орбит на вторую от ядра орбиту.

На основе своей теории БОР предсказал существование и местоположение НЕИЗВЕСТНЫХ в то время спектральных серий водорода, находящихся в ультрафиолетовой и инфра-красной областях спектра и связанных с переходом электрона на ближайшую к ядру орбиту и на орбиты более удаленные от ядра, чем вторая.

Все эти серии были ЭКСПЕРИМЕНТАЛЬНО обнаружены.

ПРОТИВОРЕЧИЯ:

Противоречия законам механики и электродинамики и в то же время использование их для расчета сил, действующих на электрон.

ГДЕ НАХОДИТСЯ ЭЛЕКТРОН В ПРОЦЕССЕ ПЕРЕХО-

ДА С ОДНОЙ ОРБИТЫ НА ДРУГУЮ?

3.ТАКИЕ (1 → 2) ПРОМЕЖУТОЧНЫЕ СОСТОЯНИЯ ЗАПРЕЩАЮТСЯ ТЕОРИЕЙ, поскольку постулируется возможность пребывания электрона только на стационарных орбитах.

4. Не получено объяснений по поводу линейчатости и различий интенсивности линий в атомном спектре водорода.

Значение теории Бора

1. Нельзя переносить автоматически законы природы, справедливые для больших тел – объектов МАКРОМИРА, на ничтожно малые объекты МИКРОМИРА – атомы, электроны, фотоны.

ТЕОРИЯ ДОЖНА РАБОТАТЬ КАК ДЛЯ МАКРО ТАК И ДЛЯ МИКРООБЬЕКТОВ (принцип соответствия Н.Бора).

Эта задача была решена в 20-х годах ХХ в. – квантовой или волновой механикой.

Создание квантовой механики произошло на пути обобщения представления о корпускулярно-волновой двойственности фотона на все объекты микромира, и, прежде всего, на электроны.

Корпускулярные свойства фотона: Е=hv. Фотон – дискретное образование, имеющее волновые свойства: v=с/λ, E=hc/λ → объединяющее корпускулярные и волновые свойства фотона,

но E=mc2 → mc2 = hc/λ → λ = hc/c2m = h/cm → λ = h/p, где р-им-

пульс – количество движения.

1924 г. Луи де Бройль (Франция)– автор гипотезы о волновых свойствах материи, которая легла в основу квантовой механики, предположил, что корпускулярно-волновая двойственность присуща не только фотонам, но и электронам:

λ = h/mv – уравнение де Бройля.

Экспериментально в 1927 г. К.Д.Девиссоном и Л.Х.Джермером в США, Дж.П.Томсоном в Англии и П.С.Тарковским в СССР

независимо друг от друга установлено, что при взаимодействии пучка электронов с дифракционной решеткой (кристаллы металлов) наблюдается дифракционная картина. Электрон вы-ступал как волна длина которой совпадала с вычисленной по уравнению де Бройля.

1925 г. Эрвин Шредингер (Австрия) ПРЕДПОЛОЖИЛ, ЧТО СОСТОЯНИЕ движущегося в атоме электрона должно описываться известным в физике уравнением стоячей электромагнитной волны. Подставив в него уравнение связывающее энергию электрона с пространственными координатами и так называемой ВОЛНОВОЙ ФУНКЦИЕЙ ψ соответствующей амплитуде трехмерного волнового процесса. ψ – может принимать как (+) так и (–) значения, ψ2 – всегда (+).

Чем больше значение ψ2 в данной области пространства, тем выше вероятность того, что электрон проявит здесь свое действие, т.е. что его существование будет обнаружено в каком–либо физическом процессе, т.е. ВЕРОЯТНОСТЬ ОБНАРУЖЕНИЯ ЭЛЕКТРОНА В НЕКОТОРОМ МАЛОМ ОБЪЕМЕ V выражается ψ2 V. ψ2 – плотность вероятности нахождения электрона в соответствующей области пространства – ОРБИТАЛЬ.

Электронное облако атома водорода. Схематическое изображение электрона, «размазанного» по всему объему атома так называемого электронного облака.

ПЛОТНОСТЬ ЭЛЕКТРОННОГО

ОБЛАКА ПРОПОРЦИОНАЛЬНА

КВАДРАТУ ВОЛНОВОЙ ФУНКЦИИ.

ЭНЕРГЕТИЧЕСКОЕ СОСТОЯНИЕ

ЭЛЕКТРОНА В АТОМЕ

Для электрона, находящегося под действием сил притяжения к ЯДРУ, уравнение ШРЕДИНГЕРА имеет решения не прилюбых, а только определенных значениях энергии. Поэтому квантованность энергетических состояний электрона в атоме (т.е. первый постулат Бора) оказывается следствием присущих электрону волновых свойств и не требует особых постулатов.

Рассматривая как модель одномерный атом со стоячими волнами де Бройля найдем Е=mv2/2= h2n2/8ml2 и стоячая волна λ=2l/m λ=h/mv → V=hn/2ml

ДОПУСТИМЫЕ УРОВНИ ЭНЕРГИИ ЭЛЕКТРОНА ОПРЕДЕЛЯЮТСЯ ЗНАЧЕНИЕМ ЦЕЛОГО ЧИСЛА n, ПОЛУЧИВШЕГО НАЗВАНИЕ ГЛАВНОГО КВАНТОВОГО ЧИСЛА (N (n) = 1 – ∞, в пределах таблицы = 7).

Решение уравнения Шредингера для реального атома также приводит к выводу о квантованности энергетических состояний электрона в атоме. Становится ясным и вопрос о состоянии электрона при переходе из одного стационарного состояния в другое (второй постулат). При переходе из одного стационарного состояния в другое (во время перехода) длина волны будет иметь переменное значение, не отвечающее условию образования стоячей волны (неустойчивое состояние) и оно будет меняться до устойчивого состояния (стоячая волна), т.е. электрон окажется в новом состоянии.

В однородной модели атома положение электрона относительно ядра определяется одной координатой, а его состояние – значением главного квантового числа; в двухмерной – двумя – числами; в трехмерный –тремя квантовыми числами. В реальных атомах электрон обладает еще одной квантованной физической характеристикой – СПИНОМ.

Таким образом, для описания состояния электрон в реальном атоме необходимо указать значения 4-х квантовых чисел.

Энергия электрона может принимать только определенные значения – квантована. Энергия реального атома тоже.

N(n) – главное квантовое число – определяет возможные энергетические состояния электрона в атоме. Принимает зна-чения 1, 2, 3, … 7, ∞. Состояние электрона характеризующееся определенным значением N – энергетический уровень (номер периода).

N– определяет и размеры электронного облака. Большим размерам электронного облака соответствует более высокая энергия электрона в атоме и большее значение n. Электроны характеризующиеся одним и тем же значением n, образуют в

атоме электронного облака приблизительно одинаковых размеров; поэтому можно говорить о существовании ЭЛЕКТРОННЫХ СЛОЕВ ИЛИ ЭЛЕКТРОННЫХ ОБОЛОЧЕК

l – ОРБИТАЛЬНОЕ КВАНТОВОЕ ЧИСЛО (ПОБОЧНОЕ, АЗИМУТАЛЬНОЕ) ФОРМА ЭЛЕКТРОННОГО облака определяется l. l – квантовано и имеет целочисленное значение от 0 до n– 1. Физический смысл l – определяет значение орбитального момента количества движения электрона:

M=mVr      M ┴ плоскости V и r

В многоэлектронных атомах энергия электрона зависит и от l (кроме n), поэтому состояния электрона, характеризующиеся различными значениями l называются ЭНЕРГЕТИЧЕСКИ-

МИ ПОДУРОВНЯМИ

Орбитальное квантовое число l обозначается цифрами 1, 2,

3, 4, 5 (S P d f g h).

Соответственно S, P, d, f, g, h – электроны (или семейства). Электронное облако 1S –электрона обладает сферической

симметрией.

1s – электроны      2р – электроны      3d – электроны

ml – МАГНИТНОЕ КВАНТОВОЕ ЧИСЛО

Из уравнения Шредингера следует, что и ориентация электронного облака в пространстве не может быть произвольной: ml – определяется значениями +l, 0-l.

Всего 2l+1 значений магнитного квантового числа, т.е. 2l+1 возможных расположений электронного облака в пространстве.

СОСТОЯНИЕ ЭЛЕКТРОНА В АТОМЕ ХАРАКТЕРИЗУЮЩЕЕСЯ, ОПРЕДЕЛЕННЫМИ ЗНАЧЕНИЯМИ КВАНТОВЫХ ЧИСЕЛ n, l,m. т.е. определенными размерами, формой и ориентацией в пространстве Э. облака – атомная электронная орбиталь.

S – СПИНОВОЕ КВАНТОВОЕ ЧИСЛО

spin – кручение, вращение) характеризующее собственное состояние электрона. Значения +1/2, –1/2. Таким образом, зна-чения квантованы и различаются на 1. Упрощенно понимают как вращение вокруг собственной оси. Проекция собственного момента количества движения электрона на избранное направление (на ось Z) и называется СПИНОМ.

В многоэлектронных атомах на каждый электрон действует не только ядро, но и вcе остальные электроны. При этом электроны облака отдельных электронов как бы сливаются в одно общее многоэлектронное облако. Точное решение уравнения Шредингера для таких сложных систем недостижимо.

Электронная структура атомов и периодическая система.

ПРИНЦИП ПАУЛИ (ЗАПРЕТ ПАУЛИ). В атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковыми.

Из этого следует, что каждая атомная орбиталь, характеризующаяся определенными значениями n, l, m может быть занята не более чем двумя электронами, спины которых имеют противоположные знаки. Такие электроны – спаренные. l=0, m= 0. Следовательно на S –подуровне имеется всего 1 орбиталь (S) (квантовая ячейка).

По принципу Паули, при l=1(Р) m =+1, 0, – 1, по 2 эл. с разными спинами. Итого: 6 электронов.

l = 2

m = 5

по 2 = 10 электронов,

l = 3

m = 7

по 2 = 14 электронов,

l = 4

m = 9

по 2 = 18 электронов.

ПРАВИЛО ХУНДА.

Устойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня, при котором абсолютное значение суммарного спина атома максимально.

ПЕРВОЕ ПРАВИЛО КЛЕЧКОВСКОГО.

При увеличении заряда ядра атома последовательное запол-нение электронных орбиталей происходит от орбиталей с меньшим значением суммы главного и орбитального квантовых чисел (n+l) к орбиталям с большим значением этой суммы.

ВТОРОЕ ПРАВИЛО КЛЕЧКОВСКОГО.

При одинаковых значениях n+l заполнение орбиталей происходит последовательно в направлении возрастания главного квантового числа

Правило Клечковского не для всех атомов описыва-

ет правильно электронную конфигурацию. Например 24Cr 1S22S22P63S23P64S23d4 (должно быть), 4S'3d5 (на самом деле).

Это явление называется «провал электронов» и объясняется тем, что более устойчивым атом является тогда, когда число ē на d-орбитали приближается к 5 или 10. В этом случае и происходит переход e c S – на d. –орбиталь.

Девиз: «ПЕРИОДИЧЕСКОМУ ЗАКОНУ

НЕ ГРОЗИТ РАЗРУШЕНИЕ, А ОБЕЩАЮТСЯ

ТОЛЬКО НАДСТРОЙКА И РАЗВИТИЕ». Д.И. Менделеев.

ЛЕКЦИЯ 3

ПЕРИОДИЧЕСКАЯ СИCTЕМА

ЭЛЕМЕНТОВ Д.И.МЕНДЕЛЕЕВА

План:

1. Открытие закона 2.  Структура таблицы

3.  Формирование закона 4.  Значение закона

I. Предпосылки открытия периодического закона. Попытки классификации химических элементов.

Периодический закон был открыт (сформулирован) в 1869 году Д.И. Менделеевым. К тому времени было уже известно более 60-ти химических элементов. По мере открытия новых элементов подтверждалась мысль о том, что многообразие окружающего мира обусловлено различными качественными и количественными сочетаниями химических элементов. Вполне закономерными были попытки исследователей выявить вза-имосвязь между химическими элементами как с качественной, так и с количественной стороны.

По мере накопления фактов об элементах возникла необходимость в их классификации. Вначале ученые пытались все химические элементы разделить на две группы – металлы и неметаллы (А.Лавуазье, Й.Я. Берцелиус). При изучении важнейших классов неорганических соединений выяснилось, что типичные металлы отличаются от типичных неметаллов не только по физическим, но и по химическим свойствам. Типичные металлы, как например кальций Ca, образуют основные оксиды, которым соответствуют основания:

2Ca + O2 → 2CaO

металл основной оксид (кальций) (оксид кальция)

CaO + H2O → Ca(OH)2

основной оксид      основание

Неметаллы, например сера S, образуют кислотные оксиды, которым соответствуют кислоты:

2S + 3O2 → 2SO3

неметалл (сера) – кислотный оксид (оксид серы)

SO3 + H2O → H2SO4

кислотный оксид – кислота (серная)

Металлы, как правило, реагируют с кислотами, замещая в них атомы водорода H, с образованием солей. Для неметаллов реакция с кислотами нехарактерна.

Позже выяснилось, что классификация химических эле-ментов на металлы и неметаллы является неполной. Так как, существуют химические элементы, которые проявляют двойственную природу. Оксиды и гидроксиды этих элементов способны реагировать и с кислотами и со щелочами (такие оксиды

гидроксиды называются амфотерными)

1817 году немецкий химик И.В. Деберейнер на основе сходства некоторых элементов расположил их отдельными триадами (Li, Na, K и Ca, Sr, Ba). При этом он впервые обнаружил, что атомная масса среднего элемента равна среднеарифметической сумме атомных масс крайних. Эта работа была одной из первых по систематизации элементов в зависимости от атомной массы, признанной основной количественной характеристикой элемента.

Предшественники Д.И. Менделеева обнаружили группы элементов, сходных по химическим свойствам, причем разница между атомными массами родственных элементов в группе равна некоторой постоянной величине.

Однако эти авторы не пошли дальше установления частных закономерностей внутри групп. В одних случаях различные естественные группы сопоставлялись чисто эмпирически, в рамках единой таблицы, а в других делались попытки поиска конкретных закономерностей.

Работы предшественников подготовили почву для открытия Д.И. Менделеева.

II. Открытие периодического закона Д.И. Менделеевым, составление системы.

Как и предшественники, Д.И. Менделеев в качестве основной характеристики, однозначно определяющей химический элемент, выбрал атомную массу. Однако, Д.И. Менделеев искал закономерности в изменении атомных масс не только химичес-ки сходных элементов внутри одной естественной группы, но и между несходными элементами. Сопоставив крайне противоположные в химическом отношении, но близкие по величине атомной массы элементы таких групп, как щелочные металлы и галогены, и написав первые под вторыми, Д.И. Менделеев расположил под и над ними другие группы сходных элементов в порядке изменения их атомных масс. Оказалось, что элементы этих естественных групп образуют общий закономерный ряд, причем химические свойства элементов периодически повторяются. При этом обнаружилось, что распределение элементов по величине их атомной массы не только не противоречит их сходству, а наоборот, прямо на него указывает.

1 марта (18 февраля по старому стилю) 1869 года Д.И. Менделеев разослал химикам набросок периодической системы химических элементов под названием «Опыт системы элементов, основанной на их атомном весе и химическом сходстве». Эта дата считается датой построения периодической системы элементов.

При изучении свойств химических элементов Д.И. Менделеев уделял особое внимание характеру изменения этих свойств у элементов аналогов и сходных соединений, которые вели к количественной оценке изучаемых явлений.

К таким свойствам относились атомная масса, кристаллическая форма, плотность, атомный объем и форма соединений.

Первый вариант системы элементов позволил Д.И.Менделееву сделать основные выводы из нее:

свойства элементов, расположенных в соответствии с величиной атомной массы, изменяются периодически;

величина атомной массы определяет характер элемента;

элементы с малыми атомными массами типические, они наиболее распространены в природе, свойства их выражены резко;

можно ожидать открытия еще многих неизвестных простых тел (элементов);

можно иногда уточнять атомные массы элементов, на основе их аналогов;

по величине массы атомов могут быть найдены аналоги элементов. На основании этих выводов и сформулирован закон.

Открытие, сделанное Д.И. Менделеевым, стало лишь на-чалом разработки естественной системы химических эле-ментов. Был установлен главный принцип: физические и химические свойства простых веществ и соединений составляют периодическую функцию атомной массы всех элементов. Д.И. Менделеев так сформулировал закон:

«Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от их атомного веса».

Периодическая система является графическим (табличным) изображением периодического закона.

В 1870 году Менделеев публикует второй вариант системы элементов под названием «Естественная система элементов». По своей форме этот вариант значительно отличался от первого. Горизонтальные ряды элементов–аналогов первого варианта превратились здесь в вертикальные. Кроме того, произошло уплотнение, сдваивание родственных рядов и образовалось 8 групп элементов, чего не было в первом варианте системы. Номера групп указывали на высшую валент-ность по кислороду элементов трех рядов, которые включены в эти группы.

Шесть вертикальных столбцов первого варианта прооб-разы периодов – превратились в периоды, более близкие к современным. Теперь каждый период начинался щелочным металлом и заканчивался типичным неметаллом–галогеном. Второй вариант системы, конструктивно более современный, позволил Д.И. Менделееву предсказать существование 11-ти новых не открытых элементов. Эти элементы Менделеевым были названы «экабор», «экасилиций», «эка-алюминий» и т. д. «Эка» означает подобный, одно и то же. Таким путем Д.И. Менделеев обозначал элементы, которые по своим свойствам должны быть близки бору (B), алюминию (Al), кремнию (Si) и т.д. Уже при жизни Менделеева были открыты новые элементы, которые подтвердили истинность закона и укрепили его в науке. Это было началом триумфа периодического закона.

В 1875 году французский химик Лекок де Буабодран открыл элемент галий (Ga) – «экаалюминий», в 1879 году шведский химик Нильсон – скандий (Sc) – «экабор», в 1886 году немецкий химик Винклер – геманий(Ge) – «экасилиций».

III. Структура периодической системы. Зависимость свойств элементов от положения в системе.

Периодическому закону и периодической системе химических элементов посвящены многочисленные труды. Среди них множество исследований, посвященных вопросу о форме периодической системы элементов. В настоящее время известно несколько сотен вариантов изображения периодической систе-мы. Такое изобилие графических вариантов таблицы элементов является результатом стремления как можно полнее и точнее отразить в рамках таблицы периодическую повторяемость свойств химических элементов.

Короткая форма таблицы была разработана Д.И.Менделеевым в 1870 году и ее называют классической( первый вариант, пред-ложенный Менделеевым в 1869 году, имел длинную форму, то есть в ней периоды располагались одной строкой). Каждый из вариантов имеет свои преимущества и недостатки.

Так, существенный недостаток короткой формы – сочетание в одной группе несходных элементов. Недостатками длинной формы являются растянутость, некомпактность. В настоящее время чаще применяется короткая форма, как наиболее удобная.

В короткой форме таблицы каждый элемент, изображенный соответствующим символом, занимает определенную клетку. Когда говорят о расположении элемента в системе, прежде всего имеют в виду общую взаимосвязь между ним и окружающими его в системе элементами, а через них со всеми остальными элементами.

Каждая клетка – это занумерованное место элемента в системе, его координаты. Сами клетки получаются за счет пересечения горизонтальных и вертикальных граф или полос.

Периодическая система элементов основана на двух основных типах закономерностей:

закономерности, проявляющиеся в вертикальных рядах (группах);

закономерности, проявляющиеся в горизонтальных рядах(периодах) и связанные с последовательным увеличением порядкового номера.

Кроме того, существуют еще 2 диагональные закономерности, охватывающие как вертикальные, так и горизонтальные ряды.

Исходя из этих положений, можно увидеть, что любой элемент имеет свойства, промежуточные между свойствами двух его соседей по вертикали, горизонтали или по двум диагоналям.

Таким образом, каждый элемент сопоставим с восемью другими. Пересечение трех направлений: вертикального, горизонтального и диагонального, получило название «звездность». Этот термин введен советским академиком Ферсманом.

Горизонтальный ряд элементов, в котором имеет место законо-мерное изменение свойств элементов от типично металлических

типично неметаллическим и далее к благородным (инертным) газам, называется периодом.

Элементы в периодах, а также водородные и кислородные соединения, образованные ими имеют следующие свойства:

свойства простых веществ изменяются от металлических

неметаллическим

элементы (за исключением инертных газов) образуют водородные и кислородные соединения, физические свойства которых изменяются от твердых к газообразным.

LiH и NaH; BeH2 и МgH2 – твердые;

СH4 и SiH4; NH3 и PH3 – газообразные;

Li2O и Na2 O; BeO и MgO – твердые оксиды; CO2; NO2; SO2 – газообразные оксиды;

• химические свойства водородных соединений изменяют-ся от восстановительных к окислительным; свойства оксидов и гидрооксидов изменяются от основных к кислотным через амфотерные.

Всего в таблице 7 периодов.

В 1-м периоде два элемента: Н (водород) и Не (гелий).

Во 2-м и 3-м периодах содержится по 8 элементов. Это малые периоды.

Затем следуют большие периоды: в 4-м и 5-м периодах – по 18 элементов, в 6-м – 32 элемента, а в 7-м (незавершенном) из-вестно 25 химических элементов.

малых периодах слава направо валентность в соединениях

кислородом (О2), как правило, возрастает от 1 до 8 (например, в 5-м периоде от рубидия Rb до рутения Ru). Затем происходит резкий скачок, и валентность в соединениях с кислородом уменьшается до 1 (серебро Ag), потом снова возрастает.

Таким образом, в том месте, где происходит резкий скачок в изменении валентности элементов, периоды, начиная с 4-го, разделили на два ряда – четный и нечетный.

Вертикальные графы, представляющие собой совокупность элементов, обладающих одинаковой валентностью в высших оксидах, называются группами.

Каждая группа состоит из 2–х подгрупп – главной и побочной. Следует учитывать, что в состав главных подгрупп входят элементы как малых, так и больших периодов, т. е. главные подгруппы начинаются с 1-го или со 2-го периода. В состав побочных подгрупп входят элементы только четных рядов больших периодов. Таким образом, символы элементов побочных подгрупп 1-й и 2-й группы смещены вправо, а всех остальных – влево. Для элементов, объединенных в одну и ту же группу, характерны следующие закономерности:

высшая валентность в соединениях с О2 (за некоторыми исключениями) соответствует номеру группы. Валентность элементов в соединениях с водородом (Н2) определяется разно-стью между числом 8 и номером группы;

в главной подгруппе (сверху вниз) с увеличением атомной массы усиливаются металлические свойства элементов и ослабевают неметаллические (в побочных подгруппах эта закономерность не всегда соблюдается).

Закономерности, характерные для групп и периодов, позволяют на основании положения элемента предсказать и его важнейшие свойства.

Все элементы периодической системы пронумерованы в том порядке, в каком они следуют друг за другом. Номера элементов называются порядковыми или атомными номерами.

Следует отметить, что в 6-м периоде за лантаном располагаются 14 элементов с порядковыми номерами 48–71, называемых лантаноидами («лантаноиды» – «подобные лантану», «актиноиды» – «подобные актинию»). Лантаноиды помещены отдельно внизу таблицы, а в клетке звездочкой указано на последовательность их расположения в системе: Ce – Lu (от церия до лютеция). Химические свойства лантаноидов очень сходны. Например, все они являются реакционноспособными металлами, реагируют с водой с образованием гидроксида и водорода. Из этого следует, что у лантаноидов сильно выражена горизонтальная аналогия.

В 7-м периоде 14 элементов с порядковыми номерами 90–103 составляют семейство актиноидов. Их также помещают отдельно – под лантаноидами, а в соответствующей клетке двумя звездочками указано на последовательность их расположения в системе: Th – Lr (от тория до лоуренсия).

Однако в отличие от лантаноидов, горизонтальная аналогия у актиноидов выражена слабо. Они в своих соединениях проявляют больше различных степеней окисления. Например, степень окисления актиния +3, а урана +3, +4, +5 и +6. Изучение химических свойств актиноидов крайне сложно вследствие неустойчивости их ядер.

IY. Современная формулировка периодического закона, объяснение явления периодичности с точки зрения теории строения атома.

Периодический закон Д.И. Менделеева и высказанные на его основе гипотезы явились стимулом к выяснению строения атома.

В начале ХХ века была создана теория строения атома, на основе которой периодический закон Д.И. Менделеева формулируется так:

«Свойства химических элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от величины заряда ядра атомов этих элементов».

Было выяснено, что порядковый номер химического элемента совпадает с зарядом ядра его атома.

На основе знания теории строения атома сущность явления периодичности объясняется тем, что с возрастанием заряда ядра атомов элементов наблюдается периодическая повторяемость элементов с одинаковым числом валентных элементов, чем объясняется периодическая повторяемость свойств химических элементов и их соединений.

Расположение электронов объясняется теорией строения атомного ядра. В свете учения о строении атомного ядра следует объяснить положение водорода в периодической системе. Атом водорода имеет один внешний электрон, который он может отдавать атомам других элементов. Подобное свойство проявляют атомы всех элементов, начинающих период: Li, Na, K, Pb, Cs, Fr. Поэтому водород Н, проявляющий металлические свойства (отдача электронов), должен находиться в главной подгруппе 1-й группы.

С другой стороны, поскольку на первом уровне от ядра может 2 электрона, водород может принимать один электрон подобно тому, как принимает его каждый атом галогенов:

+ е = Н–

этом случае водород проявляет неметаллические свойства

должен находиться в главной подгруппе VII группы. Двойс-твенность в химическом поведении водорода дает возможность отнести его прежде всего к главной подгруппе I группы и затем к главной подгруппе VII группы (в этом случае символ элемен-та заключается в скобки). Однако часто водород ставят только в I группе, поскольку он начинает период.

Y. Значение периодического закона и периодической системы химических элементов, применение ее для выяснения физических и химических свойств элементов, получения новых элементов.

Периодический закон Д.И. Менделеева имеет исключительно большое значение. Он положил начало современной химии, сделал ее единой, целостной наукой. Элементы стали рассматриваться во взаимосвязи, в зависимости от того, какое место они занимают в периодической системе. Как указывал Н. Д. Зелинский, периодический закон явился «открытием взаимной связи всех атомов мироздания».

Химия перестала быть описательной наукой. С открытием периодического закона в ней стало возможным научное предвидение. Появилась возможность предсказывать и описывать новые элементы и их соединения.

На основе закона Д.И. Менделеева были заполнены все клетки его системы от элемента с Z=1 до Z=92, а также открыты трансурановые элементы. И сегодня этот закон служит ориентиром для открытия или искусственного создания новых химических элементов (ивзестно 116 элементов).

Периодический закон послужил основой для исправления атомных масс элементов. У 20 элементов Д.И. Менделеевым были исправлены атомные массы, после чего эти элементы заняли свои места в периодической системе.

На основе периодического закона и периодической системы быстро развивалось учение о строении атома. Оно вскрыло физический смысл периодического закона и объяснило положение элементов в периодической системе.

Учение о строении атома привело к открытию атомной энергии и использованию ее для нужд человека. Можно без преувеличения сказать, что периодический закон является первоисточником всех открытий химии и физики ХХ века. Он сыграл выдающуюся роль в развитии других, смежных с химией естественных наук.

Периодический закон и система элементов лежат в основе решения современных задач химической науки и промышленности. С учетом периодической системы элементов Д.И. Менделеева ведутся работы по получению новых полимерных и полупроводниковых материалов, жаропрочных сплавов, веществ с заданными свойствами, по использованию ядерной энергии, исследуются недра Земли и Вселенная.

Девиз: «ВЗАИМОДЕЙСТВУЮТ

АНТИПОДЫ»

ЛЕКЦИЯ 4

ХИМИЧЕСКАЯ СВЯЗЬ

План лекции:

Теории Косселя и Льюиса.

Метод валентных связей (ВС) и молекулярных орбиталей

(МО).

Свойства связей.

Металлическая связь.

Водородная связь.

Вопрос о химической связи является одним из фундаментальных в химии. Первая теория – Берцелиуса – электростатическая. Вещества связаны посредством притяжения разноименно заряженных частиц.

Однако, не все химические соединения можно объяснить с позиций этой теории: H2, Cl2 и т.д. (H+,H ). Органические соединения также не укладывались в рамки этой теории.

Теории, базирующиеся на электронном строении были предложены Косселем и Льюисом.

Положения. При формировании электронных оболочек в конце каждого периода реализуется устойчивая s2 и s2p6 кон-фигурация, поэтому атомы стремятся создать устойчивые 2-х или 8-и электронные оболочки.

ТЕОРИЯ КОССЕЛЯ

Застройка внешнего ē слоя до двух или восьмиэлектронной конфигурации может происходить двумя способами:

а) путем присоединения электронов б) путем отдачи электронов

а) 11Na 1s22s22p63s1

Na0 – ē → Na+[1s22s22p6(Ne)]

б) 17Cl 1s22s22p63s23p5

Cl0 +ē → Cl-[1s22s22p63s23p6(Ar)]

Процесс образования химической связи заключается в передаче электронов от атома Na к атому Cl, в результате чего образуются разноименно заряженные ионы, связанные между собой силами электростатического взаимодействия. Такая связь получила название ионной (гетерополярной) или электровалентной.

Недостаток теории в невозможности объяснения связи в органических соединениях, а также в молекулах H2, Cl2 и т.д.

ТЕОРИЯ ЛЬЮИСА

Основным положением теории Льюиса является то, что образование химической связи до устойчивой 2-х или 8-элект-ронной оболочки осуществляется путем обобществления электронов.

1) Cl2      17Cl      1S22S22P6 3S23P5

Символом элемента обозначим ядро атома с внутренними электронами, внешние валентные электроны – точками.

(Cl–Cl)

Рассмотрим образование химической связи для молекулы N2

7N      1S22S22P3

2P3      Px Py Pz

(N ≡ N )

Такая связь, образовавшаяся путем обобществления электронов, называется ковалентной или гомеополярной или атомной.

В том случае, когда химическое соединение или молекула состоят из одинаковых атомов образуется неполярная ковалентная химическая связь.

При образовании молекул, состоящих из разных атомов, образуется ковалентная полярная связь, причем электронные пары смещаются в сторону более электроотрицательного атома. Для оценки полярной химической связи вводится величина дипольного момента, чем больше значение его, тем больше полярность связи ядрами. В результате проведенного расчета было установлено, что образование ковалентной химической связи возможно только лишь в том случае, если спины электронов ориентированы противоположно, т.е. ковалентная химическая связь представляет собой 2-х центровую, 2-х-электронную химическую связь с различной ориентацией спинов.

Е – энергия системы,

r – расстояние между ядрами, ДЕ – энергия диссоциации молекул Н, которую условно можно считать энергией образующейся химической связи

В случае кривой оси (I) не происходит образования химических связей. В случае противоположном (II) наблюдается образование минимума полной энергии, что свидетельствует об образовании ковалентной химической связи. r0 представляет собой межъядерное расстояние. Данный метод был распространен на различные химические соединения: органические, неорганические, комплексные соединения. Метод валентных связей является наглядным поскольку электронная пара может быть представлена в виде черты (валентность).

Многие свойства химических соединений объ-ясняются методом валентных связей, однако метод ВС не объясняет существование, напри-мер, ионов (Н2+) или молекул СО, NO

ВОЗБУЖДЕННЫЕ ВАЛЕНТНОСТИ АТОМОВ

Известно, что многие элементы способны участвовать в образовании нескольких типов химически связей. Это происходит при возбуждении атома и при переходе электрона на сво-бодные вакантные орбитали (p, d, f ).

При столкновении двух атомов Cl c различными ориентациями спинов ē происходит образование соединений с вален-тностью, равной 1.

Таким образом, в рамках метода валентных связей и объясняется возможность образования возбужденных валентностей атомов Cl. По этой же схеме происходит образование возбужденных состояний других атомов.

НАСЫЩАЕМОСТЬ И НАПРАВЛЕННОСТЬ СВЯЗЕЙ В

ПРОСТРАНСТВЕ

Важным свойством химических связей является ее насыщаемость и направление в пространстве, что характеризует строение молекулы. Насыщение химических связей объясняется с позиций запрета Паули. Направление химических связей объ-

ясняется пространственной ориентацией электронных атомных орбиталей. В зависимости от ориентации атомных орбиталей происходит условное деление на орбитали σ и π

Условное обозначение выбирается относительно элементов симметрии. Если элементом симметрии является ось симметрии, такая связь называется σ-связью. Если элементы симметрии – плоскость, то такая связь получила название π-связи.

H2O      NH3

HOH = 104°3

HNH = 107°

HOH =104° 30'

Следовало ожидать, что значение валентных углов для этих молекул должны быть равны 90°. Однако, экспериментальные данные показали, что значения этих углов равны (см. выше). Объяснение этого расхождения впервые было получено Поли-нгом введением гипотезы гибридизации.

ГИБРИДИЗАЦИЯ ОРБИТАЛЕЙ

Рассмотрение понятия гибридизации орбиталей, лучше всего понять на примере: бериллия, бора, углерода

4Be 1S22S2

Be → Be*

ΔΕ = 323 кДж/моль

Атом Be, поглощая энергию, переходит в возбужденное состояние. При образовании химических связей происходит смешивание по форме и энергии электронных орбиталей. В результате об-разуется смешанная (гибридная) электронная орбиталь.

Произошло образование новой sp –гибридной орбитали.

При смешивании по форме и энергии двух орбиталей s– и p-типа наблюдается выигрыш в энергии, т.е. понижение энергии по сравнению с s– и р-орбиталями.

При образовании химических связей между s– и p-гибрид-ными орбиталями и 1 S орбиталями для атома Н в случае обра-зования гибрида ВеН2 вероятность перекрывания электронных орбиталей также увеличивается, что проводит к дальнейшему понижению энергии. Таким образом, при гибридизации и при образовании химических связей, энергия возбуждения компенсируется; общая энергия возбуждения молекул становится меньше по сравнению с энергией изолированных атомов на величину энергии химической связи.

ПРОСТРАНСТВЕННАЯ ОРИЕНТАЦИЯ

Пространственное направление гибридных sp-орбиталей та-ково, что в результате образуется линейная структура молекулы.

5B      1s22s22p1

sp2 -гибридизация

три Sp2 -гибридизационных атомных орбит образуют плоскостную структуру

молекулы BH3 (плоский треугольник).

6C 1s22s22p2

∆E = 400 кДЖ/моль

При взаимодействии одной 2s орбитали с 3-мя 2p-орбиталями происходит образование четырех новых sp3-гибридных орбита-лей, расположенных друг относительно друга под углом 109°28’. Ориентированы орбитали из центра тетраэдра по его углам. Об-

разуются тетраэдрически построенные в пространстве 4 связи.

CH4

Итак, строение молекул линейное, плоскостное или тетра-эдрическое определяется направлением гибридной орбитали в пространстве.

При гибридизации р и d орбиталей, d и f орбитали образу-ют более сложные гибридные орбитали. Однако следует иметь ввиду, что гибридизация возникает всегда, когда в образовании химических связей участвуют орбитали различных типов.

ОБМЕННЫЙ И ДОНОРНО-АКЦЕПТОРНЫЙ

МЕХАНИЗМ ОБРАЗОВАНИЯ КОВАЛЕНТНОЙ СВЯЗИ

В рамках метода валентных связей образованные общие электронные пары возможны по обменному или донорно–ак-

цепторному механизму, например:

A· + -B → A ÷ B      (обменный механизм)

A + :B → A : B (донорно-акцепторный механизм) А – донор электронов; В – акцептор электронов Акцептор представляет свободную орбиталь.

H

H+

|

|

H – N + :H+

H – N – H -ион аммония

|

|

H

H

Донор отдает неподеленную электронную пару (азот).

Недостатки метода валентной связи

Если рассмотреть строение таких простых ионов, как Н2+, Не+ то видно, что химическая связь в них образована нечетным количеством электронов. Свойства таких простых соединений, как СО, NO, также не могут быть объяснены с помощью метода ВС.

Для молекул O2, исходя из его электронной конфигурации следовало ожидать при внесении в постоянное магнитное поле наличие диамагнитных свойств. В действительности же, O2 обладает парамагнитными свойствами.

8O 1S22S22P4

Для органических, в особенности для напряженных ароматических соединений этот метод является громоздким и потребовал для описания свойств введения большего числа гипотетических электронных структур (т.н. канонических структур) (см. теорию резонанса Полинга).

структура Тиле

Дьюар

МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ (МО)

Метод МО впервые был сформулирован в работе Хьюккеля и Малликена и выведен из положений квантовой механики. Основным является уравнение Шредингера, которое записывается в следующем виде:

H • ψ = E • ψ,

H – оператор, который включает в себя кинетическую и потенциальную энергию ядер, электронов, энергию взаимодействия электронов между собой, ядер между собой и электронов с ядрами; ψ – молекулярная волновая функция (строится из атомных волновых функций и представляет собой аналогию с амплитудой стоячей волны; E – полная энергия молекулы.

настоящее время точное решение уравнения Шредингера

общем виде в случае многочастичного взаимодействия практически невозможно. Однако, решение это становится возможным для валентных электронов, которые определяют совокупность химических свойств.

Предположим, что молекулярная волновая функция представляет собой линейную комбинацию атомных волновых

функций, т.е.

ψ = С1ψ1 + С2 ψ2 + … + Сn ψn ,

где ψ1, ψ2, ψn – атомные волновые функции; C1, C2, Cn – ко-

эффициент, характеризующий вероятности нахождения элек-трона около ядер 1, 2 или n.

Основные положения метода МО сводятся к следующему:

в молекуле все электроны являются общими, т.е. размещены в

пространстве между ядрами;

каждому электрону могут быть приписаны в соответствии с решением уравнения Шредингера определенные значения энергий, т.е. молекулярные орбитали, обладающие определенным значением энергии;

силы взаимодействующие при образовании химической свя-зи являются электростатическими;

в соответствии с принципом Паули на каждой новой образующейся МО располагается только 2 электрона, с взаимно компенсированными спинами;

порядок заполнения электронов МО определяется значением энергий МО; раньше заполняются те МО, которые имеют меньшие значения энергии.

σ разр.* – разрыхляющая МО

σ св. – связывающая МО , т.е. кратность связи = 1 (ординарная связь)

Для свободных МО в пространстве между ядрами наблю-

дается повышенная электронная плотность, что приводит к образованию ковалентной химической связи. Такая связь получи-ла название связывающей молекулярной орбитали. Пониженной электронной плотностью обладают разрыхляющие МО.

При образовании соединений с участием элементов 2–го периода, наряду с s-атомными орбиталями, принимают участие в образовании химических связей p-атомные орбитали (для об-легчения представляем распределение только валентных электронов).

Ксвязи=(6–2)/2 =2

В результате взаимодействия 2р–орбитали возможны образования химических связей 2–х типов:

при взаимодействии двух Р–орбиталей образуется σ-связь.

при взаимодействии двух 2Р – образуется �-связь.

Метод МО является наиболее универсальным, способен объяснить многообразие физических и химических свойств, широко использовать для оценки реакционной способности и предсказания возможных свойств различных химических соединений: неорганических, органических, комплексных,

МЕТАЛЛИЧЕСКАЯ СВЯЗЬ

В периодической системе элементов известно 16 электронов, содержащих по 1 валентному электрону, 57 элементов содержит 2 электрона, 4 элемента содержат 3 электрона, 3 элемента содержат 4 электрона, 2 элемента – 5 электронов, Ро – б электронов. У палладия – нет валентных электронов.

При изучении структуры кристаллов установлено, что в узлах кристаллической решетки находятся (+) ионы и нейтральные молекулы, т.е. металл представляет собой структуру (+) ионов, связанных с подвижными электронами, т.н. электронным газом.

Появление электронного газа объясняется тем, что для металла значение первого потенциала ионизации невелико. Таким образом, металлическая связь представляет собой нелокализованную (т.е. ненаправленную в пространстве) химическую связь.

Природа взаимодействия электронов с ионами имеет электростатический характер. Все многообразие физических и химических свойств металла объясняется металлической связью: ковкость, электропроводность, высокая температура плавления, магнитные свойства и т.д.

ВОДОРОДНАЯ СВЯЗЬ – связь водорода с наиболее электро-отрицательным элементом в атоме или между атомами (межмоле-

кулярная). Наличие ее в NH3, HF, H2O приводит к аномальным свойствам.

Девиз: ВСЕ В ПРИРОДЕ СТРЕМИТСЯ К МИНИМУМУ

ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ.

ВСЕЛЕННАЯ РАСШИРЯЕТСЯ.

ЛЕКЦИЯ 5

ЭНЕРГЕТИКА ХИМИЧЕСКИХ ПРОЦЕССОВ.

ТЕРМОХИМИЯ, ТЕРМОДИНАМИКА

План:

Общие закономерности протекания химических процессов.

Законы термохимии.

Принцип Бертло.

Энтропия.

Энергия Гиббса.

Общая энергия Е любой молекулярной системы равняется

Е = Ек + Еп + U,

где Ек – кинетическая; Еп – потенциальная;

U – внутренняя энергия системы.

Под внутренней энергией и понимают совокупность энергии электрона, колебаний ядер, вращательную и сумму энергий их взаимодействий.

В настоящее время не существует теоретических и экспериментальных методов определения внутренней энергии любой системы. Можно определить с помощью различных физических и хи-

мических методов только лишь изменение внутренней энергии.

Известно, что в процессе химических реакций происходит выделение или поглощение энергии. В этих случаях теплота реакции, в соответствии с первым началом термодинамики, расходуется, как на совершение работы, так и на изменение внутренней энергии.

Q = U + A

Изменение внутренней энергии не зависит от способа проведения процесса, а зависит от начального и конечного состояния системы.

1) Все химические процессы проходят или при постоянном давлении или при постоянном объеме.

При Р = const: Qp = U +p V = (U2 –U1 ) + p(V2 – V1)

Qp = (U2 – pV2) – (U1 + pV1), где U + pV = H – энтальпия

ΔH – представляет собой функцию состояния вещества, называемого энтальпией и характеризует теплосодержание сис-

темы .

Qp = H2 – H1 = H

Тепловой эффект реакции для процессов, происходит при V

const, равен изменению внутренней энергии (т.к. ΔV = 0).

При V= const: Qv = U

настоящее время наряду с существовавшей ранее термохимической шкалой широко используется термодинамическая шкала, которая учитывает изменение внутренней энергии системы, т.е. если внутренняя энергия системы повышается (эндотермический процесс), то значит изменение энтальпии положительно, т.е. Н>0. Если внутренняя энергия уменьшается (экзотермический процесс), Н<0.

термохимической и термодинамической шкале знаки противоположны. Для проведения различных термохимических расчетов используют стандартные значения энтальпии или

стандартное изменение энтальпии ( H°, H°298 ). Стандартные условия: концентрация 1 моль/ л, р = 101,3 Кпа, Т = 298 K

Основные законы термохимии:

Первый в термохимии закон был сформулирован одновременно двумя исследованиями двух ученых и называется законом Лавуазье–Лапласа.

Тепловой эффект образовавшегося химического соединения равен тепловому эффекту его разложения, но с обратным знаком.

Теплотой образования химического соединения называется изменение энтальпии при образовании 1 моль химического соединения из элементов

Са(тв) + С(тв) + 1,5 О2(г) = CaCO3 (тв)

Н°298 = -1207 кДж/моль

Другой важной характеристикой термохимических величин является теплота сгорания химического соединения. Теплота сгорания представляет собой изменение энтальпии при полном окислении 1 моля химического соединения.

С6H6(ж.) + 7,5 O2(г) = 6СО2(г) + 3Н2О(ж);

Н°298 =-3280 кДж/моль.

Энтальпии химических соединений (стандартное значение) обычно определяют экспериментально или вычисляют в соответствии со II законом термохимии.

Закон Гесса:

Тепловой эффект реакций зависит только от начального и конечного состояния системы, но не зависит от пути протекания реакций.

C(т.) + О2(г.) → СО2

H = H1

+ H2

1)

(г.)

Н°298

= -393,5 кДж/моль

2)

C(г.) + 0,5О2(г.) → СО(г.)

Н°298

= -110,5 кДж/моль

2(г.) → СО2(г.) Н°298 = -283 кДж/моль

= 2) + 3) = -393,5 = -110,5 + (-283,0)

помощью закона Гесса возможно определение тепловых эффектов реакций и теплот образования химических соединений в тех случаях, когда проведение таких процессов или получение веществ в силу различных причин невозможно.

Из закона Гесса вытекают 2 следствия:

теплота образования химического соединения не зависит от способа его получения;

стандартный тепловой эффект реакции равен сумме стан-дартных теплот образования конечных продуктов за вычетом стандартных теплот образования исходных продуктов.3)CО(г.)+0,5О

Направленность химических процессов

В химии известны процессы самопроизвольно вытекающие при нормальных условиях

O3 = O2 + O

Na2O + CO2 = Na2CO3

Zi2O + CO2 = Zi2CO3

CaO + H2O = Ca(OH)2

2H2O2 → 2H2O + O2

В этих случаях могут протекать химические реакции, и возможно устойчивое состояние молекул дает эмпирический принцип Бертло;

Все химические системы стремятся сократить запас внутренней энергии до минимального значения

Существование озона и перекиси водорода представляют как ложно равновесные системы, поскольку O2 и H2O обладают минимальными затратами энергии. Однако для того, чтобы началось разложение этих веществ в сторону образования более устойчивых молекул, нужно подвести энергию извне, задать энергию активации.

Однако принцип Бертло выполняется не во всех случаях. Известны реакции, для которых процессы взаимодействия происходят с повышением внутренней энергии.

H2 + J2 ↔ 2HJ; H°298 = 6 кДж/моль

Кроме того, при высоких температурах начинают проходить реакции, которые запрещены принципом Бертло.

4. Микросостояние системы оценивается параметрами отдельных частиц. Макро состояние системы оценивается усредненными параметрами этих частиц

I

II

III

A

B

A

B

A

B

1, 2, 3, 4

, 2, 3

4

1,2

3,4

, 2, 4

3

1,3

2,4

, 3, 4

2

1,4

2,3

, 3, 4

1

2,3

1,4

,4

1,3

,4

1,2

Таким образом, в результате возможного распределения частиц: для 1 макросостояния системы реализуется только одно состояние микросистемы; II макро состояние описывается четырьмя состояниями; III макросостояние соответствует 6 микросостояниям.

Число возможных микросостояний, характеризующих данное состояние макросистемы, называется термодинамической вероятностью макросостояния (w).Тогда функция

S = kln называется энтропией системы, где k – постоянная Бо-

льцмана; k = R/NA.

Рассматривая физические процессы растворения химических веществ, диффузии, испарения, видим, что во всех случаях происходит увеличение числа возможных микросостояний системы. Причем наибольшее изменение числа микросостояний происходит при испарении. Во всех этих случаях соответствующих уравнению S = kln происходит увеличение энтропии.

Обратный процесс – кристаллизация, конденсация приводят к уменьшению энтропии.

Рассматривая изменение числа микросостояний с позиций неупорядоченной системы, видно, что физический смысл понятия энтропии сводится к мере неупорядоченности системы. Чем больше степень беспорядка, тем больше увеличивается энтропия.

Второе начало термодинамики.

Самопроизвольно протекают те процессы, которые сопровождаются увеличением энтропии, т.е. S > 0. Изменение энтропии пропорционально изменению теплосодержания, т.е.

S = H /T,      T = const      S = [кДж/моль К]

1 Кал/моль • гр = 1 э.е. = 1 Дж/моль К

Для проведения различных термодинамических расчетов

используют стандартные значения энтропии или изменения энтропии ΔS°, ΔS°298.

Истинное значение энтропии можно определить, в соответствии с постулатом Планка.

Энтропия – абсолютно чистого кристаллического вещества с идеальной решеткой при температуре абсолютного нуля (Т = О°К) равняется нулю.

На основании этого постулата определяется значение энтропии многих химических соединений, которые сведены в таблице, как для стандартных условий, так и для различных значений температур и давлений.

Изобарно–изотермический потенциал. Свободная энергия Гиббса.

Свободная энергия Гиббса определяется разностью между энтальпией и энтропией системы, т.е.

G = H – TS (p = const); G = H – T S, где H – энтальпий-

ный фактор, T S – энтропийный фактор. Термодинамические расчеты вычисления свободных энер-

гий Гиббса проводят для стандартных условий: G°,      G°298.

Самопроизвольно протекают те химические процессы, которые сопровождаются уменьшением свободной энергии Гиббса.

Таким образом, для низких значений температур возможность самопроизвольного протекания химических реакций определяется величиной и знаком изменения энтальпии. Процесс в этом случае соответствует принципу Бертло. При повышении температуры определяющим является знак изменения энтропии.

Девиз: «ВСТРЕЧАЯСЬ С ПРЕГРАДОЙ,

БОРИСЬ ИЛИ УХОДИ»

ЛЕКЦИЯ 6

КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

Кинетикой химических реакций называется раздел химии, занимающийся изучением скоростей химических реакций и механизмов химических реакций и процессов.

Скоростью химической реакции называется изменение концентрации реагирующих веществ в единицу времени.

Скорость химических реакций зависит от того, протекает ли реакция в гетерогенной фазе или в гомогенной, т.е. от природы взаимодействующих веществ.

Для гомогенной среды скорость химических реакций определяется концентрацией реагентов. Чем выше концентрация,

тем более вероятным становится столкновение молекул, т.е. скорость химических реакций в гомогенной фазе увеличивается.

Для гетерогенных систем взаимодействие происходит на поверхности раздела фаз, т.е. определяется величиной этой поверхности. Чем больше поверхность, тем ниже скорость химической реакции, т.е. скорость химических реакций зависит от концентрации реаген-

тов и поверхности раздела фаз.

V = (C2 – C1 )/(t2 – t1) = = – C/ t (V средняя )

Уменьшение концентрации во времени

Кривая изменения концентрации исходных реагентов для интервала времени t (происходит изменение угла наклона се-кущей а следовательно, и изменение скорости химический ре-акций для данного интервала времени, т.е. средней скорости химических реакций для данного интервала времени зависит от угла наклона секущей и α), т.к. происходит во времени расходование реагентов, то в уравнении ставим знак “-”

Истинное значение V для момента времени: V = -limΔt→0 C/ t = -dC/dt. Истинная скорость химических реакций зависит

от: природы реагирующих веществ, концентрации (С), температуры (t), катализатора, давления, растворителя.

Зависимость скорости химических реакций от концентрации (закон действующих масс)

В 1877 г. Гульберг и Вааге на экспериментах и теоретичес-ком изучении зависимости скорости реакций от концентрации сформулировали закон действия масс.

Скорость химических реакций пропорциональна концентрации реагирующих веществ.

Рассмотрим химическую реакцию следующего вида:

А + В → АВ

Из теории вероятности: вероятность сложного события рав-на произведению вероятностей простых событий

V = γ • WA • WB;      WA = α • CA;      WB = β • CB

γ – постоянная характеризующая среду, в которой происхо-дит взаимодействие.

Чем больше С, тем больше вероятность столкновения моле-кул исходного реагента А в данной точке объема.

Значит: V = γ • β • • CA • CB → V = k • CA • CB, k – константа скорости химической реакции. Физический смысл К: скорость

химической реакции при единичной концентрации.

Если принять С вещества А и В за единичную (1 моль/литр), то тогда константа скорости химических реакций представляет собой скорость химических реакций при единичном значении концентрации.

k – молекулярная характеристика химического процесса, зависит от:

природы реагирующих веществ;

природы полярности растворителя;

от температуры;

но не зависит от концентрации.

При написании уравнения скорость химических реакций учитывают изменение концентрации только лишь газообразных и жидких продуктов реакции.

В том случае когда взаимодействие происходит на поверхности раздела фаз, концентрация твердой фазы считается неизменяю-щейся, постоянной, и не входит в уравнение скорости химической реакции.

Пример:      Na2O(тв.) + СO2(2) → Na2CO3(тв.)

V = k • CCO2

Рассмотрит в общем случае взаимодействие нескольких реа-гентов в cоответствии со следующим уравнением реакции:

α A + β B + γ C → dD + eE + …

V = K • CAα • CBβ • CCγ

Для определения скорости реакций сложного многоступенчатого процесса в соответствии с теорией соударений следует предполагать, что V зависит от концентрации реагирующих веществ с показателями степеней, равными их стехиометрическим коэффициентам. Однако, в действительности, вероятность столкновения 3-х и более частиц в одной точке пространства мала.

Механизмы реальных реакций являются сложными, В соответствии с этим постановка показателя степени стехиометрических коэффициентов реакции неправомерна.

На практике для определения кинетических параметров, определяются значения концентрации некоторых реагентов. Сумма показателей кинетических коэффициентов для уравне-ния скорости химических реакций определяет порядок реак-ции. Однако в химии встречаются реакции нулевого, первого, второго и значительно реже – третьего порядка. Порядок реакции может быть дробным, что определяется механизмом реакции.

В химической кинетике важным является понятие молеку-лярности реакции. Под молекулярностью реакции понимают количество молекул, участвующих в элементарном акте процесса. В зависимости от этого различают мономолекулярные реакции, когда в элементарном акте химического процесса участвует 1 молекула (процесс разложения). Димолекулярные реакции, когда в химическом процессе участвуют две молекулы. Тримолекулярные реакции, когда в элементарном акте участвуют 3 молекулы. Эти химические реакции являются до-

статочно редкими. Реакций с более высокой молекулярностью не встречается.

Зависимость скорости химических реакций от температуры

Впервые Вант-Гофф экспериментально показал, что нагре-вание на 10°С дает увеличение скорости химических реакций в

2-4 раза, т.е.

,

где γ – коэффициент Вант-Гоффа, равен 2 ÷ -4 Показатель степени – число температурных скачков по 10° Кинетическая энергия равна

Ek = mV2/2 = 3/2 KT

где К – постоянная Больцмана, Т – абсолютная температура

при нагреве на 10°.

mV12/2 = 3/2 KT1

= 3/2 K • 273

V

mV22/2 = 3/2 KT2

= 3/2 K • 283

2/V 2 = 283/273 = 1,04; V

/V = 1,02

2

1

2

1

Таким образом, при увеличении температуры на 10° скорость химических реакций увеличивается на 2 %, а не на 200-400, как это следует из уравнения Вант-Гоффа.

Ответ на этот вопрос был впервые дан Аррениусом. Он предположил, что не все соударения приводят к образованию продуктов реакций, а существуют так называемые активные соударения.

Как показано на рис., на оси ординат количество молекул, обладающих определенной энергией столкновения, на оси абсцисс – энергия соударения. При температуре Т, активными яв-ляются такие молекулы, для которых энергия соударения много больше энергии Eа, получившей название энергии активации.

Для температуры Т2 эта зависимость аналогична. В этом слу-чае резко возрастает количество активных молекул, что в конечном итоге к приводит к увеличению скоростей химических реакций, Аррениус на основании теоретических и эксперимен-тальных данных показал, что постоянная скорости химических реакций зависит от температуры и определяется по уравнению:

где – А – фактор соударений, характеризующий частоту активных соударений; е – основание натурального логариф-ма = 2.71, Еа – энергия активации, R – газовая постоянная, T – абсолютная температура.

На основании этого уравнения с высокой степенью точнос-ти можно определить константу k, а следовательно и саму V. Однако, не для всех случаев соблюдается совпадение теорети-ческих значений константы скорости химическиx реакций с экспериментальным определением.

где Р – стерический фактор, Р ≤ 1 В этом уравнений Р – стерический фактор учитывает объем

заместителей в реагирующих молекулах. Чем больше заместитель, тем меньше становится вероятность атаки реакционного центра, тем больше наблюдается расхождений между расчетными и экспериментальными значениями скоростей. Стери-ческии фактор «Р» определяется экспериментально.

Понятие об активированном комплексе (о переходном состоянии)

При взаимодействии реагентов возможны образования различных промежуточных продуктов реакции, причем скорость этих реакций может существенно отличаться. Кроме того, из промежуточных продуктов реакции при столкновении, могут проходить процессы, параллельные основной реакции. Таким образом, все совокупности данных о строении исходных реагентов, промежуточных продуктов реакции и конечных во времени характеризует механизм химической реакции. При изучении механизма химических реакций используются различные экспериментальные и теоретические методы.

В настоящее время наибольшие успехи были получены с помощью теории абсолютных скоростей реакций и теории активированного комплекса. Теория абсолютных скоростей реакции основывается на классической теории взаимодействия двух частиц. В теории активированного комплекса предпола-гается образование на промежуточной стадии так называемого переходного состояния или активизированного комплекса.

H2 + J2 < = > 2HJ

τ = 10– 8 с

При столкновении двух частиц А и В при образовании акти-вированного комплекса, возможно перекрывание электронных оболочек, что приводит к ослаблению старых химических связей

образованию новых химических связей. Образовавшееся таким образом переходное состояние является термодинамическим неустойчивым и возможно разрушение его с образование как исходных реагентов, так и продуктов реакции (см. график). Следует отметить, что не каждое активное столкновение можно привести к образованию активированного комплекса, а только такие со-ударения, при которых осуществляется максимальное перекры-вание электронных оболочек взаимодействующих атомов.

Таким образом, для проведения химического процесса, т.е. для образования активированного состояния, следует затра-

тить необходимое количество энергии, которое получило назва-

ние энергии активации – Ea, которая представляет собой разницу между энергиями образования активированного комплекса

исходных реагентов. Взаимодействие возможно только тогда, когда энергия активных частиц больше или равняется Ea. Однако, известны в химии реакции, сопровождающие образование конечных продуктов без образования переходного состояния (туннельный эффект).

Зависимость скорости химических реакций от катализатора

Катализатором (К) называется химическое вещество, изменяющее скорость химических реакций. Катализатор, уменьшающий скорость химических реакций, называется ингибитором (И).

Различают гомогенный и гетерогенный катализ. В случае гетерогенного катализатора взаимодействие происходит на по-верхности катализатора, гомогенного – активность вещества определяется в реакционном объеме.

При взаимодействии реагентов в присутствии катализатора, образуется новое переходное состояние, включающее в свою структуру катализатор, В этом случае при повышении скорости химической реакции происходит уменьшение энергии активации (Е), а при применении ингибитора (Е) – увеличивается, по сравнению с (Е) исходных реагентов без применения катализатора. То есть катализатор в переходном состоянии с исходными реагентами образует систему новых химических связей.

Катализаторы обладают избирательным или селективным свойством, что для одних и тех же исходных реагентов приводит к образованию различных продуктов реакции:

C2H5OH T = 300°C

H2O + C2H4

Al2O3

T = 300°C

O

C2H5OH

H2O + CH3 – C

Al2O3

H

В настоящее время не существует единой теории катализа, поэтому в основном в химии при подборе катализатора используются экспериментальные методы. Одним из недостатков этого метода является отравление катализатора. При выборе того или иного катализатора необходимо избавляться от каталитических ядов.

ЛЕКЦИЯ 7.

ХИМИЧЕСКОЕ РАВНОВЕСИЕ

План:

Реакции обратимые и необратимые.

Правило Бертолле.

Принцип Ле-Шателье.

В химии известны реакции двух типов:

необратимые химические реакции (идущие до конца).

обратимые химические реакции

К необратимым можно отнести такие реакции, которые со-провождаются выделением газообразных, труднорастворимых или мало диссоциирующих химических соединений.

Ba Cl2 + Na2SO4 → BaSO4↓ + 2NaCl

Zn + HNO3 конц → Zn(NO3)2 + 2NO2↑ + 2H2O

NaOH + HCl → H2O + NaCl

Другие реакции следует отнести к обратимым реакциям. Впервые на обратимые реакции обратил внимание Бертоле при

получении поваренной соли из морской воды

Na2SO4 + MgCl2 <=> 2NaCl + MgSO4

Впервые знак обратимости химический реакций был введен

Вант-Гоффом.

Рассмотрим в общем виде обратимую реакцию:

А + В

V1

C + Д

V 2

V1

= V2

; V1

= k1

= K2 • CC • CД

• CA • CB ; V2

k 1

• CA

• CB = k2 • CС

• C Д

K = k1 /k2

= (CA • CB )/(CС • CД )

Изменение концентрации исходных реагентов А и В в зави-

симости от времени. Таким образом, химическое равновесие при взаимодействии достигается тогда, когда скорость прямой реакции будет равна скорости обратной.

Такие значения концентрации получили название равновесных концентраций. Константа химического равновесия (K) – равна отношению константы прямой реакции к константе обратной реакции или равна отношению произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных соединений.

Константа химического равновесия зависит от природы реа

гирующих веществ, природы растворителя, от температуры.

В том случае, когда константа прямой реакции будет изменяться в большей степени в зависимости от температуры, чем константа обратной реакции, то и константа химического равновесия будет увеличиваться с увеличением температуры. Кон-

станта химического равновесия не зависит от исходной концентрации реагирующих веществ.

Константа химического равновесия представляет собой постоянную величину, т.е. имеет фиксированную величину при определенном значении температуры. Катализатор не оказывает влияния на величину К. и не изменяет выход обратимой реакции.

Если К>>1, то равновесие химической реакции практически смещено в сторону образования продуктов, если К<<1, то хи-

мическое равновесие смещено в сторону исходных реагентов.

2С(тв) + O2(2)

K1

2CO(2)

K2

/ [O2]

K. = K1 /K 2 = [CO] 2

При написании уравнений для К. необходимо использовать

значение равновесных концентраций.

Если же концентрация молекул практически не изменяется (твердые вещества) значение концентрации принимается постоянным и не вводится в уравнение концентрации равновесия.

Смещение химического равновесия. Принцип Ле-Шателье.

Смещение химического равновесия можно достигнуть несколькими путями:

1) изменением температуры. Известно, что константа химического равновесия имеет фиксированное значение при определенной температуре.

Q – 3H2 + N2 <=> 2NH3 + 92 кДж/моль ΔH0298 = -92 кДж/моль

Таким образом, для данного экзотермического процесса охлаждение системы приводит к смещению химического равновесия в сторону образования аммиака. При повышении температуры химическое равновесие системы смещается вправо, поскольку данная реакция является эндотермической.

2) Изменение концентрации.

3KCNS + FeCl3

K1

Fe(CNS)3

+ 3KCl

K2

K =

K

1

=

[Fe(CNS)

3

] • [KCl]3

K

[KCNS]3

]

2

• [FeCl3

При взаимодействии исходных реагентов образуется ру-биново-красное окрашивание раствора (цвет Fe(CNS)3). При

добавлении к равновесной системе избыточного количества KCNS или FeCl3 видим, что интенсивность окраски воз-растает, т.е. произошло смещение химического равновесия вправо.

При добавлении к равновесной системе избыточного коли-чества KCl интенсивность окраски уменьшается, т.е. равнове-сие сместилось в сторону исходных реагентов.

В 1 случае при постоянном значении константы равновесия происходит изменение (увеличение значения равновесной концентрации в знаменателе уравнения). Эти изменения приводят к увеличению значения равновесной концентрации конечных продуктов реакции.

Во 2 случае происходит увеличение равновесной концентрации в числителе уравнения, что в свою очередь вызывает увеличение равновесной концентрации конечных продуктов, т.е. равновесие смещается в сторону исходных реагентов.

3) В частности, в случае изменения концентрации для процессов, протекающих в газах, значимым является изменение давления

3H2 + N2 < === > 2NH3

Для этих процессов при увеличении давления равновесие смещается в сторону меньшего числа молекул (когда объем ре-агируюших веществ превышает объем образующихся продуктов реакции). В том случае, когда в процессе реакции не происходит изменения объемов, изменение давления не приводит к смещению химического равновесия.

Общий ответ о возможном смещении химического равновесия заключен в эмпирическом принципе Ле Шателье:

Если на систему, находящуюся в равновесии оказать какое-либо внешнее воздействие, то в результате процессов происходящих в ней, химическое равновесие будет смещаться в сторону того процесса, который это воздействие будет уменьшать.

Однако известно, что в тех случаях, когда в процессе реакция образуется легколетучее, малодиссоциируемое или труд-норастворимое вещество, реакции практически происходят до конца.

Впервые данное положение было сформулировано Бертол-

ле:

Если в обратимой реакции образуются легко летучие, мало растворимые или мало диссоциирующие химические соединения, то равновесие смещается в сторону их образования.

Для равновесных процессов ΔG = 0

Из термодинамики известно, что ΔG = – RT • lnK, где К – константа химического равновесия.

Данное уравнение устанавливает связь между изменением свободной энергии Гибса и константой химического равнове-сия. При расчетах используется следующее уравнение:

ΔG = ΔH – TΔS = 0

ΔH = TΔS

TРАВН = ΔH/ΔS

Девиз: РАСТВОР – ХИМИЧЕСКАЯ СИСТЕМА

ЛЕКЦИЯ 8

ОБЩИЕ ЗАКОНОМЕРНОСТИ И СВОЙСТВА

РАСТВОРОВ НЕЭЛЕКТРОЛИТОВ

План лекции:

Теории растворов.

Свойства растворов неэлектролитов.

Способы выражения концентрации растворов.

В зависимости от агрегатного состояния вещества различают так называемые 9 дисперсных систем. Если в каком-нибудь веществе (среде) распределяется другое вещество, то такая сис

тема называется дисперсной.

I.

1) Т-Т

2) Т-Ж

3) Т-Г

II.

4)

Ж-Г

5)

Ж-Т

6)

Ж-Ж

III. 7)

Г-Т

8)

Г-Г

9)

Г-Ж

Наиболее важное значение в химии приобретают системы I и II группы т.е. твердые и жидкие растворы. Условно жидкие растворы разделяют на:

1) взвеси (Ø частиц > ммк) : а) суспензия, 6) эмульсия; 2) одно-родные (Ø частиц < 1 мм) (истинные, молекулярные растворы); 3) промежуток между 1) и 2) занимают коллоидные растворы.

Таким образом, растворы представляют собой гомогенную систему переменного состава, находящегося в состоянии подвижного динамического равновесия.

1.Теории растворов

Растворы представляют собой сложную систему, образовавшуюся в результате распределения между молекулами растворителя молекул растворенного вещества.

К концу XIX века при объяснении строения растворов существовали 2 теории:

1) физическая (Аррениуса), 2) химическая (Менделеева).

В соответствии с физической теорией предположим, что молекулы растворяемого вещества и растворителя представляют собой однородную механическую смесь; предполагается что между молекулами растворителя и растворяемого вещества отсутствуют какие-либо взаимодействия.

Однако, многочисленные эксперименты противоречили основным положениям этой теории. Как известно, процесс растворения жидкости, твердого и газообразного вещества сопровождается тепловыми эффектами (H2SO4 + Н2О, KOH+H2O + Q

и др.), а также изменением их общего объема (C2H5OH + H2O). Кроме того, при растворении веществ изменяются физические и химические свойства молекул и ионов растворимого вещества (CuSO4 + H2O). Происходит изменение окраски и для многих соединений известны кристаллические вещества, содержащие в своем составе молекулы растворителя. Для воды – кристаллогидраты, причем многие кристаллогидраты являются устойчивыми соединениями. Поэтому важнейшим в химической теории является то положение, что молекулы растворимого вещества и растворителя взаимодействуют между собой с образованием ассоциатов, представляя собой соединения

переменного состава.

Этот процесс взаимодействия между молекулами раство-римого вещества и растворителя носит название сольвата-ции и если растворитель – это вода, то гидратации, т.е каж-дая молекула или ион окружены сольватной или гидратной оболочкой.

В дальнейшем, химическая теория растворов была усовершенствована в работах Каблукова и Кистяковского.

2. Способы выражения концентрации растворов

Важной характеристикой любого раствора является его состав раствора, который выражается в его концентрации. Количество растворенного вещества, содержащегося в определенном количестве растворителя или раствора, называется концентрацией. В химии условно считают, что концентрированным является такой раствор, когда концентрация растворенного вещества примерного одного порядка с концентрацией растворителя. Разбавленный раствор – когда концентрация растворимого вещества значительно меньше концентрации растворителя.

Кроме того, в химии различаются насыщенные, ненасыщенные и пересыщенные растворы. Насыщенным раствором называется такой раствор, в котором между твердым компонентом и раствором соблюдается состояние динамического равновесия, т.е. число молекул, перешедших из кристаллического состояния в раствор (процесс растворения) равно числу молекул, перешедших из раствора в кристаллы (процесс кристаллизации). Ненасыщенный – раствор, для которого концентрация растворимого вещества меньше концентрации насыщенного раствора при данном значении температуры. Пересыщенный – раствор, для которого концентрация выше концентрации растворимого вещества насыщенного раствора. Состояние пересыщения является неустойчивым.

Массовая доля (процентная концентрация) показывает сколь

ко граммов вещества растворено в 100 граммах раствора. Пример: 100г. 5%-ного раствора = 5 г вещества + 95 г воды. Моляльная концентрация – показывает количество молей

растворенного вещества в 1 кг растворителя.

Эквивалентная концентрация показывает – сколько экви

валент растворимого вещества, находится в 1 литре раствора.

Мольная доля – отношение числа молей растворимого ве

щества к общему числу молей в растворе: N1

= n1 /(n1

+ n2), где

n1

– число молей растворенного вещества; n2 – число молей

растворителя.

Титр – показывает, сколько миллиграммов вещества, со

держится в 1 мл раствора

N•Э

Т = –, где N – нормальность раствора,

1000

Э – эквивалент вещества.

3. СВОЙСТВА РАСТВОРОВ НЕЭЛЕКТРОЛИТОВ

3.1 ОСМОС. ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ

В том случае, когда при смешении растворов отсутствует полупроницаемая мембрана (перегородка) наблюдается явление двусторонней диффузии, т.е. молекулы растворителя проникают в раствор, а

молекулы растворимого вещества в растворитель. Если на поверхности раздела 2-х жидкостей установить полупроницаемую мембрану, пропускающую только лишь молекулы растворителя, то наблюдается случай односторонней диффузии (ОД). О.Д., происходящая через полупроницаемую мембрану, получила название осмоса.

Во 2-м случае через полупроницаемую мембрану в раствор с большим значением концентрации будет переходить больше молекул растворителя. В этом случае произойдет увеличение объема, сопровождающееся повышением давления на мембрану. Мембрана прогнется вверх. 3-й случай является противоположным второму. Соответствующее давление, возникающее при этом, носит название осмотического давления. Для измерения О.Д. используют приборы, которые называются осмометрами.

Давление, равное атмосферному, представляет собой осмо-тическое давление. О.Д. называется такое давление, которое необходимо приложить к раствору, чтобы прекратить осмос. Величина О.Д. зависит от концентрации раствора, от температуры, НО НЕ ЗАВИСИТ ОТ природы растворенного вещества и растворителя.

Растворы с одинаковым осмотическом давлением получили название изотонических растворов. Для определения осмотического давления разбавленных растворов используют эмпирические уравнения Вант-Гоффа. Так как в разбавленных растворах неэлектролитов межмолекулярное взаимодействие между молекулами растворимого вещества мало, то для такой системы можно использовать уравнение для идеальных газов Менделеева-Клапейрона:

pосмV = nRT → pосм = (n/V)RT = cRT

Используя метод измерения осмотического давления можно определить молекулярную массу растворимого вещества.

3.2 Давление насыщенного пара растворителя над раствором

Пар, находящийся в равновесии: со своим раствором, называется насыщенным. При определенном значении температуры давление насыщенного пара растворителя над раствором обозначим Р, чистого растворителя Р0

Таким образом, над раствором в соответствии с принципом Ле-Шателье происходит понижение концентрации молекул растворителя, т.е. давление насыщенного пара растворителя над раствором меньше давления насыщенного пара над чистым растворителем т.е. Р < Р0 Ро – Р – представляет собой понижение давления насыщенного пара растворителя над раствором, (Р0 – Р)/Р0 – относительное понижение давления насыщенного пара растворителя над раствором.

В результате многочисленных экспериментов удалось пока-

зать, что относительное понижение давления насыщенного пара растворителя над раствором пропорционально мольной доле растворенного вещества (1 закон Рауля).

(Р – Р0 )/Р0 = N 2 = n2 /n 1 + n2, где N2 -мольная доля растворимого вещества, n1 – число молей растворителя, n2 – число молей

растворимого вещества.

1-й Закон Рауля используется для определения молекулярных масс растворимого вещества. Рассмотрим зависимость давления насыщенного пара растворителя над раствором от температуры.

Жидкость закипает, когда давление насыщенного пара ста-новится равным атмосферному давлению. Жидкость затвердевает, когда давление насыщенного пара растворителя над раствором становится равным давлению насыщенного пара твердой фазы.

Следует отметить, что и температура затвердевания и температура кипения является индивидуальными характеристиками растворителя.

Кривая зависимости для раствора идет ниже кривой раство-

рителя, т.е. раствор закипает при более высотой температуре и затвердевает при более низкой температуре, чем чивстый раство-ритель.

Экспериментально было показано, что повышение температуры кипения и понижение температуры затвердевания пропорционально концентрации растворенного вещества, т.е.

Δtкип = E • mв, Δtзам = K • mв,

где Е – эбулиоскопическая постоянная; К – криоскопическая постоянная; mв – концентрация растворимого вещества (моляльность)

Их значение для разбавленных растворов получают для одномоляльных растворов. Т.о. криоскопическя постоянная показывает на сколько одномоляльный раствор затвердевает ниже растворителя, а эбуллиоскопическая – на сколько раствор кипит выше по сравнению с растворителем. Для каждого растворителя определяется соответствующее значение крио-скопической и эбуллиоскопической постоянной, которое затем используется в расчетах. Е и К зависят только от природы

растворителя. 2-й закон Рауля

Повышение температуры кипения и понижение температуры затвердевания раствора над чистым растворителем прямо пропорционально моляльности раствора.

Таким образом, закипание раствора и кристаллизация раствора происходит в определенном интервале температуры.

Девиз: «ВОДА – ПРИЧИНА РАСПАДА

СОЕДИНЕНИЙ НА ИОНЫ.

ПОДОБНОЕ РАСТВОРЯЕТСЯ В ПОДОБНОМ»

ЛЕКЦИЯ 9.

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ.

План:

Сила электролитов.

Ионное произведение воды.

Ионные реакции.

Гидролиз солей.

Диссоциация электролитов в водном растворе.

При изучении основных закономерностей для растворов кислот, оснований и солей было показано, что они не подчиняются законам Вант-Гоффа и Рауля. Было установлено, что осмотическое давление, понижение температуры замерзания и повышение температуры кипения изменяется на одну и ту же величину

Для разбавленных растворов электролитов значение изото-нических коэффициентов определяется целочисленным значе-

нием i = 2, 3, 4.

В 1887г. для объяснения этих отклонений от законов Аррениусом была предложена теория, получившая впоследствии название теории электролитической диссоциации (э.д.).

Основные положения теории э.д.:

электролиты в водных растворах диссоциируют (распадаются) на ионы;

под действием электрического тока (+) заряженные ионы движутся к катоду, (-) заряженные (анионы) – к аноду;

диссоциация – обратимый процесс.

Впоследствии эта теория была развита в работах Каблукова и Кистяковского. На основании химической теории растворов Менделеева Каблуков впервые выдвинул гипотезу о гидратации ионов. Рассматривая механизм электролитической диссоциации следует остановиться на 2-х механизмах взаимодействия в растворе, I-ион дипольное взаимодействие, II-диполь-диполь-ное взаимодействие.

Рассмотрим процесс электролитической диссоциации на примере иондипольного взаимодействия

При помещении в водный раствор кристаллического ион-нопостроенного соединения полярные молекулы воды ориентируются противоположными концами относительно ионов кристалла. Происходит ослабление ионной связи с последующим разрывом. Следующий процесс заключается в образовании относительно (+) или (-) заряженных ионов, сольватных оболочек. При сольватации происходит образование слабых межмолекулярных химических связей.

Таким образом, сольватация или гидратация представляют собой основную причину электролитической диссоциации. Отсюда становится понятным физический смысл изотоничес-кого коэффициента: число ионов на которые распадается элек-тролит

HCl

H+ + Cl-

i → 2

CaCl2

Ca2+ + 2Cl-

i → 3

Типы диссоциации. Сила электролита

Степенью э.д. называется отношение числа молекул, диссо-циирующих в растворе к общему числу молекул.

α = n/N, где n – число диссоциирующих молекул; N – общее число молекул в растворе

Условно считают, что если α > 30 % – то сильный электролит; α ÷ 2-30 % – электролит средней силы; α < 2 % – слабый электролит.

Существует зависимость между степенью э.д. и значением

изотонического коэффициента:

i = 1 + α (k – 1); где k – число ионов

Степень диссоциации зависит от:

природы и полярности растворителя (чем больше полярность тем выше степень диссоциации)

от природы и полярности вещества

от температуры (с повышением температуры степень диссоциации изменяется (уменьшается для сильных электролитов; для слабых – проходит через максимум)

от концентрации (с повышением концентрации степень диссоциации уменьшается)

при добавлении одноименных ионов степень диссоциации уменьшается в соответствии с принципом Ле-Шателье

СH3COOH <=====> CH3COO– + H + CH3COO-

Сильные электролиты:

все растворимые соли, щелочи, минеральные кислоты:

HNO3, H2SO4, HCl, HBr, HJ, HClO4, HClO3, HMпO4

Слабые электролиты: слабые минеральные кислоты: HF,

HCN, H2CO3, H2SiO3↓, H3PO4, HNO2, H2SO3, HClO2, HClO, HN3 и др., органические кислоты (муравьиная, уксусная), ор-

ганические амиды, гидроксид аммония (NH4OH). Fe(OH)2, Fe(OH)3, Cu(OH)2, Zn(OH)2, органические спирты, фенолы, вода, нерастворимые соли (ВаSО4, AgCl), сульфиды, СаСО3

Константы диссоциации

СH3COOH      CH3COO– + H+

[CH3COO~] [Н+] Кдис.= –

[CH3COOH]

Константа равновесия представляет собой константу электролитической диссоциации. Константа диссоциации зависит: от природы и полярности растворителя, от природы электролита, от температуры, НО НЕ ЗАВИСИТ от концентрации раствора

1) H2CO3

H+ + HCO3

~

K1

~ 4 • 10-7

2) НСО 3

H+ + CO3

2-

K2

~ 5 • 10-11

К1 > K2 в 8000 раз

Процесс э. д. двух, трех-, и более основных кислот, а также

> К2

К3 > …

общем случае константа э.д. по двум стадиям может быть записана следующим образом:многокислотныхоснованийидет ступенчато, причем К

H2CO3 <======> 2H+ + CO32~ Kдис = K1 • K2 = [H+] 2[CO3-2]

Кравн.

[H2CO3]

Таким образом, в общем случае, для ступенчатого процесса э.д., общая константа равняется произведению констант по стадиям:

К = K1 • K2 • K3 … для H3PO4 K1 = 6 • 10-3 K2 = 5 • 10-8 K3 = 10-13

Таким образом, для разбавленных растворов электролитов справедливым является закон действия масс, который описывает количественно процесс э.д. по стадиям.

Рассмотрим э.д. слабого электролита:

,

где С – исходная концентрация; α – степень э.д.

закон

разбавления Оствальда,

Таким образом, при понижении концентрации электролита степень э.д. увеличивается.

СИЛЬНЫЕ ЭЛЕКТРОЛИТЫ

Сильные электролиты в водных растворах диссоциируют полностью. При значительном значении концентрации каждый гидратированный (+) заряженный ион окружен со всех сторон (-) заряженными гидратированными ионами. Кроме того, в этих растворах возможно образование так называемых ионных пар, которые образуются в результате взаимодействия гидратированных ионов в растворе.

Все это приводит к тому, что в химических реакциях и физикохимических процессах происходит понижение значения концентраций ионов по сравнению с истинным значением. Поэтому, в 30-е годы одновременно была предложена теория сильных электролитов. В этой теории основным понятием была

активность молекул.

Активностью молекул и ионов называется их концентрация, в соответствии с которой они действуют в химических процессах,

т.е. a = f • C, где a – активность молекулы или ионов, f – коэффициент активности аналитическое значение концентрации молекулы или ионов в растворе; всегда для сильных электролитов f < 1, определяется экспериментально с помощью различных методов.

Для слабых электролитов, для очень разбавленных растворов сильных электролитов f = 1.

Таким образом, используя понятие активности молекул или ионов становится возможных определение констант диссоциации не только слабых, но и сильных электролитов, т.е. становится возможным количественная оценка силы электролита.

Произведение растворимости

Рассмотрим в качестве примера насыщенный раствор сульфата кальция CaSO4

CaSO4 <=====> Ca2+ + SO42+

установлено равновесие между количеством молекул, диссоциирующих в растворе и количеством ионов, переходящих из раствора в кристаллическую фазу

= [Ca+2] [SO4-2] [CaSO4]

[Ca2+] [SO42-] = Кравн • [CaSO4] = const

Произведение концентрации ионов электролита при данной температуре есть величина постоянная и называется произве-

дением растворимости (Пр).

ПрCaSO4 = [Ca+2] [SO4-2]

Таким образом, чем выше Пр, тем больше растворимость соответствующего электролита. При введении электролита с одноименными ионами в соответствии с принципом Ле-Ша-телье растворимость данной соли уменьшается. Знание значений Пр крайне необходимо для более полного размельчения (осаждение, растворение) различных химических соединений. Широко используются в аналитической химии и химической технологии.

PbJ2 <=====> Pb2+ + 2J-ПрPbJ2 = [Pb+2] • [J-]2

Ионное произведение воды. Водородный показатель

Вода, как слабый электролит диссоциирует по следующему уравнению:

H2O <=====> H+ + OH-[H+] • [OH-]

Kp =      [H2O]      → Kр[H2O] = [H+] • [OH-] = KB

K B – ионное произведение воды (при постоянной температуре – постоянная), при t = 25°C (н.у.) Кв = 10-14

С повышением температуры происходит увеличение КB. Значение К B используется для определения концентрации ио-нов H+ или OH– в растворе.

[H+] = KB [OH-]= KB [OH-] [H+]

Для нейтрального раствора концентрация [H+] = [OH-] =

= 10-7 г-ион/л. Для кислых растворов концентрация [H+] > > 10– 7 г-ион/л (10-6, 10-5, 10-4, …). Для щелочных растворов концентрация [H+] < 10-7 г-ион/л (10-8, 10-9, 10-10, …).

Пример. Концентрация [H+] = 10-4 г-ион/л, то [OH-] = (10-14) / 10– 4 = 10-10 г-ион/л.

Однако, для проведения расчетов на практике пользуются более удобной шкалой, так называемым водородным показателем (рН). рН представляет собой отрицательный логарифм концентрации Н+

рН = -Lg [H+]: для нейтральной среды – рН = 7; для кислой среды – рН < 7; щелочной среды – рН > 7

В расчетах используется следующее уравнение: рН+рОН = =14. Для измерения кислотности или основности среды используют индикаторы, изменяющие свой цвет в зависимости от значений кислотности.

Молекулярные и ионные уравнения реакции

В соответствии с теорией э.д. в растворах электролитов реакции идут между ионами с высокими скоростями. В сторону образования ↑, ↓ и малодиссоциирующих соединений. При написании уравнений используется следующая форма: сна-чала записывается в молекулярной форме с указанием летучих и труднорастворимых соединений, затем записывается в

молекулярно-ионной форме (в молекулярной форме записываются соединения трудно растворимые, легко летучие, малодиссоциирующие), затем ионы не участвующие в реакции сокращаются.

Водные растворы солей в зависимости от природы образую

щих их кислот и оснований могут быть кислыми (NH4Cl) щелочными (NaNO2) и нейтральными(NH4NO2,NaCl)

Кислотность или основность водных растворов солей объясняется протеканием в них реакции гидролиза. В широком смысле ГИДРОЛИЗ – ЭТО ЛЮБОЕ ВЗАИМОДЕЙСТВИЕ ВЕ

ЩЕСТВ С ВОДОЙ.

Более конкретно гидролиз можно определить как реакцию соли с водой, приводящую к образованию кислоты и основания. Таким образом, гидролиз – это процесс, обратный ней-трализации (реакции между кислотой и основанием с выделе-нием воды) .

Константа гидролиза записывается выражением, обратным выражению константы равновесия нейтрализации. Характер протекания гидролиза, т.е. природа продуктов реакции и реакции получающегося раствора, зависят от сочетания силы кислоты и силы основания, образующих соль, поэтому возможны три варианта гидролиза солей.

1. Соль образована слабой кислотой и сильным основанием

(NaCH3COO, Na2CO 3, NaCN, Na2SO3). Рассмотрим гидролиз солей образованных одно-, двух– и трехосновных кислотами и однокислотным основанием.

Соль (ацетат натрия) в воде находится в состоянии полной диссоциации

NaCH3COO Na+ + CH3COO–      (1)

С водой возможна реакция лишь того иона, который с од-

ним из ионов воды, Н+ или ОН– , дает слабый электролит, т.е.

СНзСОО– + H+OH– <======> CH3COOН + OH-,      (2)

где CH3COOH – слабый электролит (Кдисс = 1,86-10-5). Это сокращенная ионная запись процесса гидролиза. Полная (молекулярная) запись процесса:

NaCH3COO + HOH

CH3COOH + NaOH

(3)

Ионы Na+ в процессе не участвуют, т.к. образовавшийся бы

NaOH – сильный электролит

в воде диссоциирован полно-

стью. Образующиеся (2) гидроксид ионы обусловливают щелочную среду раствора (рН > 7).

Концентрация воды в достаточно разбавленном растворе

практически не изменяется, поэтому константа гидролиза (Кг)

по уравнению (2) записывается:

КГ =

[CH3COOH] • [OH-]

;

[CH3COO-]

Умножив числитель и знаменатель на [Н+] получим:

[CH

COOH] • [OH-][Н+]

K

B

1 • 10-14

К

Г

=

3

=

=

= 5,38 • 10-10

[CH COO-] [Н+]

K

КИСЛ

1,86 • 10-5

3

Отсюда вывод: ЧЕМ МЕНЬШЕ КОНСТАНТА ДИССОЦИ

АЦИ И (Ккисл), ТЕМ БОЛЬШЕ КГ , СИЛЬНЕЕ ПОЛОЖЕНИЯ

РАВНОВЕСИЯ (2) СДВИНУТО ВПРАВО И ПОТОМУ ИОНОВ

ОН– , А ЗНАЧИТ ВЫШЕ ЩЕЛОЧНОСТЬ РАСТВОРА И БОЛЬ-ШЕ ЗНАЧЕНИЕ рН.

Приведем пример гидролиза соли, полученной с двухоснов

ной слабой кислотой К2

СО3:

K2CO3 + HOH

KHCO3 + KOH

(4)

Это полное уравнение гидролиза по 1-й ступени.

KHCO3 + HOH < ==== > H2CO3 + KOH

(5)

(5) – полное уравнение гидролиза по П-й ступени.

Следует подчеркнуть, что равновесие в реакции 4 сильно сдвинуто вправо поэтому гидролиз преимущественно протекает по первой ступени.

Приведем также пример гидролиза соли образованной сильным основанием и трехосновной слабой кислотой (1 – ступень)

Na3PO4 + HOH < === > NaOH + Na2HPO4

( 6)

2. Рассмотрим второй случай гидролиза, когда соль образована сильной кислотой и слабым основанием (NH4Cl). Хлорид аммония находится в водном растворе в состоянии полной

диссоциации:

NH4Cl

NH4

+ + Cl~

(7)

Гидролиз иона Cl~ невозможен, так как он привел бы к обра

зованию сильной кислоты НС1. При гидролизе иона NH4

+ по

лучается слабый электролит – гидроксид аммония (NH4OH):

NH4

+ + HOH <====> NH4OH + H+

(8)

Ионы водорода обусловливают кислую реакцию раствора.

KГ из уравнения (8):

[NH4OH] • [H+]

КГ =

(9)

NH4

+]

Умножив числитель и знаменатель на [OH-], получим

КГ =

[NH4OH] • [H+] [OH-]

=

KB

,

[NH +] [OH-]

K

ОСН

4

(10)

где КОСН – константа диссоциации слабого основания.

Из (10) следует, что чем меньше КОСН, тем выше КГ, тем боль-

ше уравнение 8 сдвинуто вправо, а значит больше концентрация

Н+ и меньше значение рН.

Приведем пример гидролиза, когда основание двухкислотное

ZnCl2 + HOH <====> ZnOHCl + HCl

(11)

и вторая ступень

ZnOHCl + HOH <===> Zn(OH)2 + HСl

(12)

3. Далее рассмотрим 3-й случай гидролиза, когда соль образована слабым основанием и слабой кислотой. Нитрит аммо

ния диссоциирует по уравнению (13):

NH4NO2

NH4+ + NO2–

(13)

Оба иона образуют с водой слабые электролиты NH4OH и

HNO2:

(14)

NH4NO2 + HOH <===> NH4OH + HNO2

Константы диссоциации NH4OH и HNO2 близки, концентрации ионов ОН– и Н + также почти равны, поэтому раствор почти нейтральный рН ≡ 7

В общем случае в этом варианте гидролиза может получиться нейтральный, кислый или щелочной раствор в зависимости от того , гидролиз какого солеобразующего иона преобладает.

КГ из (14):

КГ =

[NH4OH] • [HNO2]

(14)

[NH4+] • [NO2]

Умножив числитель и знаменатель на [H+] • [OH-], получим

Kr =

[NH4OH] • [HNO2] • [H] • [OH]

=

KB

(15)

[NH4] • [NO2] • [H] • [OH]

KкислКосн

Из (15) следует, что если кислота сильнее основания (Ккисл > Косн) среда будет слабокислой, если основание сильнее сла-

бощелочной. Соли, образованные сильной кислотой и силь-

ным основанием не подвергаются гидролизу (NaCl, K2SO4), т.к.

диссоциированы полностью и не могут образовать слабого электролита. рН немного отличается от 7 из-за влияния ион-ной силы раствора на диссоциацию воды. Гидролиз, сопровождающийся уходом продуктов реакции из зоны реакции или образованием осадка, условно называют необратимым:

AL2(CO3)3 + 6HOH → 2AL(OH)3↓ + 3H2CO3

3H2O 3CO2↑

2AL3+ + 3CO2

3– + 3H2O

2AL(OH)3↓ + 3CO2 ↑

Девиз: «КТО-ТО ТЕРЯЕТ (ВОССТАНОВИТЕЛЬ),

А КТО-ТО НАХОДИТ (ОКИСЛИТЕЛЬ)»

ЛЕКЦИЯ 10.

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ

РЕАКЦИИ

План:

Окислительно-восстановительные реакции.

Растворение металлов. Образование двойного электрического слоя.

Водородный электрод. Схема гальванического элемента (Сu/H2). Стандартный электродный потенциал.

Электродвижущая сила (ЭДС).

Oкислительно-восстановительные реакции (ОВР)

Реакции, сопровождающиеся изменением степени окисления атомов в молекулах реагирующих веществ, называются ОВР. При сгорании или медленном окислении на воздухе алюминия происходит его окисление кислородом.

Аl° + O2 = Al2O3

при этом нейтральный атом А1 изменяет степень окисления на

3+. Это происходит в результате полуреакции отдачи электронов окисления.

Восстановитель – Al° – 3е → Аl3+ – окисление

Степень окисления (3+) показывает сколько электронов отдано другому атому при условии, что соединение имело бы чисто ионный характер. Окисление не бывает без восстановления, подобно тому как притяжение не бывает без отталкивания и действие без противодействия.

Окислитель -O2° + 4е → 2O2– – восстановление.

Принятие электронов – процесс восстановления. Метод уравнивания ОВР называется электронным балансом (см. пример):

4

Al0 – 3ē → Al3+

O20 + 4ē →2O2-

4Al + 3O2 →2Al2O3

Рассмотрим реакцию, проходящую в водном растворе

+ H20↑

Раcставим степени окисления всех элементов

Выберем те атомы, которые меняют степень окисления (Zn, H)

Запишем полуреакции окисления и восстановленияZn0+H+1Cl-1→Zn2+Cl1-

| Zn0 – 2ē → Zn2+ 1 | 2H+ + 2ē → H20

Уравняем реакцию

Zn + 2HCl → ZnCl2 + H2↑

Если слить подкисленные растворы КМпО4, имеющего красно-фиолетовую окраску и NaNO2, то через некоторое вре-мя раствор обесцвечивается. Качественный анализ смеси показывает, что в ней содержится ничтожно мало ионов NO2– и МnO4– значительное количество ионов NO3– и Мп2+. Очевидно, произошло превращение NO2-, МпO4– → NO3-, Мп2+, которые не имеют характерной окраски.

В отдельности растворы КМпО4 и NaNo2 могут храниться долго без изменения, следовательно, наблюдаемая реакция обусловлена двумя взаимосвязанными переходами, в результате которых изменяется степень окисления азота и марганца.

NO2– → NO3– ;      МпO4– → Мп2+

Для составления уравнения ОВР, протекающей в водном растворе, удобно пользоваться методом электронно-ионного баланса. Сначала составим уравнение полуреакций окисления и восстановления. Число атомов азота в левой и правой части одинаковое, а кислорода разное. Для уравнивания атомов кислорода в левую часть запишем H2O, т.к. реакция идет в водном растворе:

NO2– + H2O → NO3-

Для уравнивания атомов водорода справа приписываем недостающее число в виде ионов водорода (вот почему реакция

протекает в кислой среде).

NO2– + H2O → NO3– + 2H+

Теперь уравниваем сумму зарядов слева и справа. Восстановитель – NO2– + H2O – 2e → NO 3– + 2H+ – окисле

ние.

Аналогичные операции проводим для ионного уравнения

перехода перманганат-иона в двухвалентный ион марганца: окислитель – МпO4– + 8H+ + 5e = Мп2+ + 4Н2О – восстановление.

Как и по закону сохранения массы сумма электронов отдан-ных восстановителем должна равняться сумме зарядов приня-тых окислителем, поэтому:

5NO2– + 5H2O – 10ē → 5NO3– + 10H+

2МпO4– + 16H+ + 10ē = 2Мп2+ + 8Н2О

и подставляя в уравнение, сокращая одноименные ионы и мо

лекулы:

5KNO2 + 2KMnO4 + 3H2SO4 = 5KNO3 + 2MnSO4 + K2SO4 + 3H2O

В конце проверяем правильность составления по равенству атомов кислорода в левой и правой части ОВР.

Растворение металлов.

Образование двойного электрического слоя.

Растворимость одного вещества в другом – свойство, присущее всем веществах. Растворимость может быть неограниченной и крайне малой, что зависит от термодинамических свойств растворяемого вещества и растворителя. Даже при чрезвычайно малой растворимости одного вещества в другом всегда имеет место переход веществ через поверхность их контакта. Любой металл растворяется в воде, однако, растворимость в ряду металлов изменяется в очень широких пределах. Например, щелочные металлы бурно взаимодействуют с водой, при этом из воды образуется водород, а в растворе – гидроксиды металлов:

2M + 2H2O → 2MOH + H2 + Q

Серебро практически не реагирует с водой, тем не менее, процесс перехода частиц серебра в воду происходит, и получается так называемая “серебряная вода”. Таким образом, одни металлы активно растворяются в воде, другие – крайне мало.

Ответ на вопрос, чем обусловлена различная растворимость металлов в воде, дает отрасль химической науки – электрохимия.

Рассмотрим особую группу гетерогенных процессов – электрохимические реакции, протекающие на границе раздела фаз, в частности металл – вода (или раствор соли металла). Эти реакции характеризуются переносом заряда и вещества через границу раздела фаз твердое вещество – жидкость.

Из медной пластинки -Cu2+ ионы переходят в воду. При этом

кристаллической решетке металла окажется избыток электронов и пластина приобретает отрицательный заряд. Между отрицательно заряженной пластиной и перешедшими в раствор положительными ионами возникает электростатическое притяжение, что препятствует дальнейшему переходу ионов меди в раствор, т.е. процесс растворения металла прекращается.

Одновременно развивается противоположный процесс: ионы меди из раствора, подойдя к поверхности пластины, принимают от нее электроны и переходят в нейтральное состояние.

Через некоторое время устанавливается состояние динамического равновесия, при котором скорость перехода ионов из металла в раствор равна скорости разряжения ионов из раствора на металле.

При контакте металла с раствором его соли , эти две со-прикасающиеся фазы приобретают противоположные заряды,

результате на поверхности раздела фаз образуется двойной электрический слой и между металлом и раствором возникает разность электрических потенциалов. Система, состоящая из электрического проводника и раствора (или расплава) электролита, в который погружен проводник, называется электродом.

Так, медная пластина, опущенная в водный раствор СuSО4 – типичный электрод.

Состояние равновесия электродного процесса определяется электродным потенциалом E представляющим собой разность потенциалов на границе металл – электролит. Непосредственно измерить абсолютное значение электродного потенциала нельзя, но его можно определить сравнением с известным потенциалом другого электрода при стандартных условиях –

электрода сравнения. В качестве электрода сравнения применяют водородный электрод.

Водородный электрод. Схема гальванического элемента (Сu/H2). Стандартный электродный потенциал.

Водородный электрод представляет собой платиновую плас-тину, опущенную в раствор кислоты (обычно HCl или Н2SО4, через который пропускается газообразный водород

Рис. 1 – Принципиальная схема водородного электрода

Действие этого электрода соcтоит в следующем:

Рис. 2 – Схема гальванического элемента, состоящего из медного и водородного электродов

Газообразный водород не проводит электрического тока, но, адсорбируясь в водном растворе на поверхности платины, ведет себя как электрод, аналогичный металлическому. Для увеличения адсорбирующей способности платину покрывают слоем губчатой платины (платиновой чернью). Платиновую пласти-ну опускают в раствор кислоты (обычно HCl или Н2SО4) с концентрацией (активностью) ионов водорода, равной единице, и через раствор пропускают водород так, чтобы происходило непрерывное соприкосновение поверхности пластины с раствором и водородом. В результате платина насыщается водородом. Молекула водорода в адсорбированном состоянии распадается на атомы, которые ионизируются (Н – ē → Н+), и ионы Н+ переходят в раствор подобно ионам металла. Одновременно ионы водорода из раствора, находящиеся вблизи поверхности платины, принимают электроны (Н+ + ē → H). Между этими процессами устанавливается равновесие, которое в упрощенной форме можно передать уравнением: Н+ + ē = 1/2H2.

Заряд платиновой пластины зависит от парциального давления водорода, концентрации ионов водорода в растворе и температуры. Потенциал водородного электрода при концентрации (активности) в растворе ионов Н+, равной 1 моль/л, давлении газообразного водорода в 101325 Па и при температуре 25° С (стандартные условия) принят равным нулю.

Электрод, потенциал которого сравнивается с потенциалом водородного электрода, должен находиться при тех же условиях. Потенциал электрода, измеренный при стандартных условиях, т.е. при температуре 25° С, давлении 101325 Па и активности ионов в растворе, равной единице, называется стандартным электродным потенциалом (обозначение Е°).

Электродвижущая сила (ЭДС).

При измерении потенциала изучаемого электрода, например медного, медную пластину (с отходящим от нее проводником) опускают в раствор, содержащий ионы Си2+ с концентрацией (активностью) 1 моль/л, и эту систему соединяют электроли-тическим мостиком со стандартным водородным электродом (рис. 2 ). Электролитический мостик – это П-образная стеклянная трубка, заполненная проводящим электрический ток раствором – обычно насыщенным раствором КСl. Полученное устройство называется гальванической цепью, или гальваническим элементом.

Если цепь разомкнута, на каждом электроде устанавливается равновесие с отвечающим ему электродным потенциалом:

Cu2+(р-р) + 2ē = Cu(Кp)

E° Cu2+/Cu

H+(р-р) + ē = 1/2 H2(г)

Е° H+/H2

Следует обратить внимание на то, что в индексе при символе потенциала сначала записывают окисленную форму вещества,

затем восстановленную форму.

В замкнутой гальванической цепи электроны с платинового электрода переходят на медный. Это означает, что равновесие нарушено и на платиновом электроде совершается реакция, в результате которой водород превращается в ионы:

1/2H2 (г) – ē → H+(р-р) – Е°н+/н2

Хотя, разумеется, заряд электрода и отвечающий ему знак потенциала не зависят от способа написания электродного процесса, при изменении направления реакции знак потенциала изменяется на противоположный. Это делается для того, что

бы с потенциалами можно было проводить такие же операции, как с ΔG, т.е. формально использовать закон Гесса.

На медном электроде электроны, перешедшие с платиново-го электрода, взаимодействуют с ионами меди, в результате на электроде осаждается металлическая медь, т.е. проходит реак-ция восстановления:

Сu2+(р-р) + 2ē → Сu(кр)      Е°Сu2+/Cu

Учитывая, что число отданных электронов при окислении и принятых при восстановлении должно быть одинаковым, запишем уравнение суммарного процесса:

1/2 H2(г ) – ē → H+(р-р)

– Е°н+/н2

Сu2+(р-р) + 2ē → Сu(кр)

Е°Сu2+/Cu

H2(г) + Сu2+(р-р) = H¯+ (р-р) + Сu(кр);

E = Е°Сu2+/Cu – Е°н+/н2

Разность электродных потенциалов E – это электродви-

жущая сила гальванического элемента. Так как водородный электрод служит электродом сравнения, для которого Е°н+/н2, то измеряемая эдс рассматриваемого элемента – это потенциал медного электрода по отношению к водородному. Если изме-ренная эдс гальванической цепи из стандартных водородного и медного электродов составляет +0,34 В, то, значит, стандарт-ный потенциал меди равен:

Сu2+ + 2ē → Сu      E = Е°Сu2+/Cu = +0,34 B

Положительное значение стандартного потенциала меди говорит о возможности самопроизвольного процесса осаждения меди и о невозможности противоположного процесса – растворения меди в кислых растворах с концентрацией ионов водорода 1 моль/л. В гальванической цепи, составленной из цинкового и водородного электродов, равновесное значение эдс при стандартных условиях составит – 0,76 В:

Zn2+ + 2ē → Zn      E°Zn2+/Zn = -0,76 B

Отрицательное значение стандартного потенциала цинка свидетельствует о невозможности протекания реакции по этому уравнению; самопроизвольно осуществляется процесс в противоположном направлении:

Zn – 2ē → Zn2+      -E°Zn2+/Zn = +0,76 B

т.е, металлический цинк растворяется в растворах кислот с концентрацией ионов водорода 1 моль/л.

Девиз: “АКТИВНЫЙ – ОТДАЕТ”

ЛЕКЦИЯ 11

ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ МЕТАЛЛА.

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ.

ЭЛЕКТРОЛИЗ. КОРРОЗИЯ

План:

Ряд стандартных электродных потенциалов.

Направление электродных процессов.

Уравнение Нернста.

Ряд стандартных электродных потенциалов

Если расположить стандартные электродные потенциалы металлов в порядке уменьшения их отрицательного значения и повышения положительного, т.е. в порядке возрастания электродных потенциалов, то получится ряд стандартных электро-дных потенциалов (ранее используемое название – ряд напряжений металлов).

Чем более отрицателен электродный потенциал, (металлы в ряду ДОН) тем выше способность металла посылать ионы в раствор и тем сильнее проявляет себя металл как восстановитель. Все металлы, расположенные левее водорода, т.е. имеющие отрицательное значение электродного потенциала, растворяются в кислотах с концентрацией (активностью) ионов водорода 1 моль/л.

Если электродный потенциал металла имеет положительный знак, то металл является окислителем по отношению к водоро

ду и не вытесняет его из растворов, содержащих по 1 моль/л ионов водорода и катионов металла, а, наоборот, водород вытесняет металл из раствора соли.

Рассмотрим гальваническую цепь из стандартных медного и цинкового электродов (концентрация ионов металлов в растворах по 1 моль/л). Эдс этого элемента составляет 1.10 В. Это значение – есть разность электродных потенциалов меди и цинка:

E° = E°Cu2+/Cu – E°Zn2+/Zn = 0.34 – (-0.760) = 1.10B

Цинк, электродный потенциал которого имеет отрицательное значение (-0,76 В), посылает в раствор большее число катионов чем медь, поэтому отрицательный заряд цинкового электрода будет выше и электроны с цинковой пластины переходят на медную, и, соединяясь с катионами меди из раствора вблизи медного электрода, приводят к осаждению металлической меди на элект-

роде. Таким образом, на цинковом электроде самопроизвольно проходит реакция окисления цинка, а на медном – восстанов

ление ионов Сu2+

Zn: Zn – 2ē → Zn2+

– Е° = +0.760

Cu: Cu2+ + 2ē → Cu

Е° = +0.34В

Суммарная реакция, протекающая в этом гальваническом элементе, записывается уравнением:

Cu2+ + Zn = Cu + Zn2+      Е° = +0.34 – (-0.76) = 1.10B

Направление электродных процессов

Для установления направления электродных процессов, расчета эдс и правильного написания уравнения самопроизвольно протекающей в гальваническом элементе реакции следует поступать следующим образом. Пользуясь таблицей стандартных электродных потенциалов, записывают уравнения реакций для каждого электрода с указанием значения электродного потенциала. Электродную реакцию с большим отрицательным или меньшим положительным значением потенциала переписывают в обратном направлении (при этом знак потенциала следует изменить на противоположный). Под этим уравнением записывают уравнение второй электродной реакции в том виде, в котором она дана в справочной таблице. Умножают коэффициенты при формулах веществ на такие числа, чтобы числа принятых и отданных электронов были равны (следует обратить внимание, что потенциалы на эти числа не умножаются!). Суммируют оба уравнения и их потенциалы. Таким путем получают оба уравнения, их потенциалы и уравнение самопроизвольно протекающей электродной реакции.

Ниже приведен пример использования данного способа для определения, будет ли олово растворяться в растворе кислоты с СH+ = 1 моль/л. Из табл. выписываем уравнения реакций и значения потенциалов для олова и водорода:

Sn2+ + 2ē → Sn

Е° = -0,14B

H+ + ē → 1/2 H2

Е° = 0

В прямом направлении самопроизвольно протекает реакция, характеризующаяся большим (алгебраическим) значением

потенциала. Так как Е°н+/н2 > Е°sn2+ /sn2; (0,00 > – 0.14), то такой реакцией является восстановление ионов водорода. Уравнение

другой реакции, как источника электронов, перепишем в об

ратном направлении

Sn = Sn2+ + 2ē      Е° = + 0.14B

Общее уравнение реакции, проходящей в гальваническом элементе, получается суммированием обоих уравнений:

2H+ + Sn = Sn2+ + H2      Е° = 0.14 В

Таким образом, олово растворяется в растворе кислоты с СH+ = = 1 моль/л.

Определим, будет ли олово растворяться в воде. Из таблицы стандартных электродных потенциалов находим, что потенци

ал E°H+/H для воды (CH+ = 10-7 моль/л) не равен нулю, как это

имело место для растворов с CH+ = 1моль/л, а равен – 0,41 В, т.е.

H+ + ē → 1/2 H2 Е = – 0,41 В,

при CH+ = 10-7 моль/л

Для олова:

Sn2+ + 2ē → Sn

Е° = -0,14B

Так как |– 0,41| > |-0,14|, то в прямом направлении протекает реакция восстановления ионов олова (как она записана в табл.). Реакция, характеризующаяся меньшим потенциалом, будет протекать в обратном направлении, т.е.

H2 =2H+ + 2ē

Следовательно, реакция, протекающая самопроизвольно, выражается уравнением: Sn2+ + H2 = Sn + 2H+

Таким образом, в воде (точнее, в растворе соли с CSn2+ = 1 моль/ л) олово не растворяется, а если через раствор соли олова пропускать водород, то будет осаждаться металлическое олово.

Как известно, изменение изобарного потенциала в системе численно равно работе, совершаемой в результате химической реакции:

ΔG = – A

Работа электрического тока равна произведению числа молей перенесенных электронов n, постоянной Фарадея F = 96484 Кл/ моль и напряжения в электрической цепи. Так как электродный потенциал – это ЭДС гальванической цепи с водородным электродом, то работу электродной реакции можно рассчитать относительно работы реакции стандартного водородного электрода:

A = nE° F

(1)

Поскольку для водородного электрода принято E° = 0, то и работа его реакции также равна нулю, и, следовательно, G°,

H°, S°, для реакции стандартного водородного электрода также равны нулю. Подставляя (1) в равенство G = – А, получаем:

G = – nEF

(2)

G = -nE°F

Изменения изобарного потенциала при нестандартных и стандартных условиях связаны соотношением

(3)

где Писх и ПС ПР – соответственно произведение концентраций (в степени их стехиометрических коэффициентов) продуктов реакции и исходных веществ. Объединяя (2) и (3), получаем:

(4)

Формула (4) – уравнение Нернста, позволяющее вычислить электродные потенциалы при нестандартных условиях. Для электродного процесса:

Mn+ (p-p) + nē = M(kр)

уравнение ( 4 ) при 298,15 К приобретает вид:

0,059

(5)

Eмn+/м = E°мn+/м – n

lg1/Cмn+

Уравнение Нернста

С помощью уравнения Нернста можно рассчитать электродвижущую силу окислительно-восстановительного процесса при нестандартных концентрациях, если известно стандартное значение Е°. Для окислительно-восстановительной реакции уравнение (5) при 298,15 К записывается так:

0,059

n+

ox

E = E° – – lg –

n

Cмredn+

где n – число участвующих в реакции электронов; Смn+ – любые нестандартные концентрации ионов в растворе окислителя и восстановителя.

Пользуясь уравнением Нернста, можно рассчитать, например, потенциал цинкового электрода в 0.001 М растворе его соли составит:

Е = -0.76 – 0.0592/2 • lg(1/0.001) = – 0.85 B

Следовательно, при уменьшении концентрации ионов цинка в растворе потенциал металла становится более отрицателен (по отношению к стандартному водородному электроду).

Девиз: “ЭЛЕКТРОЛИЗ

ЛЕКЦИЯ 12.

ЭЛЕКТРОЛИЗ. КОРРОЗИЯ.

План:

Электролиз расплавов и растворов

Электролиз водных растворов электролитов

Применение электролиза

Коррозия металлов Защита от коррозии. Защитные поверхностные покрытия металлов

Электролиз расплавов и растворов.

В растворах и расплавах электролитов имеются разноименные по знаку ионы (катионы и анионы), которые, подобно всем частицам жидкости, находятся в хаотическом движении. Если в такой раствор или расплав электролита, например в расплав хлорида натрия (NаС1 плавится при 80°C), погрузить инертные (угольные) электроды и пропустить постоянный электрический ток, то ионы будут двигаться к электродам: катионы Nа+ – к катоду, анионы Cl – – к аноду . Ионы натрия Nа+, достигнув катода, принимают от него электроны и восстанавливаются: Nа+ + ē = Nа 0, а хлоридионы Cl -, отдав электроны аноду, окисляются: 2Cl– – 2с = Сl2. В итоге на катоде ваделяется металлический натрий, а на аноде хлор.

Если теперь почленно сложить уравнения этих двух электродных реакций (предварительно умножив первое на 2), то получим общее, или суммарное, уравнение электролиза хлорида натрия:

Nа+ + ē = Nа0

2

2Cl– – 2ē = Сl2

1

2Nа+ + 2Cl-

эликтролиз

2Nа + Cl2

эликтролиз

или

2NаCl

2Nа + Cl2

Эта реакция является окислительно-восстановительной: на аноде протекает процесс окисления, на катоде – процесс восстановления.

Электролизом называется окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита

Сущность электролиза состоит в осуществлении за счет электрической энергии химических реакций – восстановления на катоде и окисления на аноде. При этом катод отдает электроны катионам, а анод принимает электроны от анионов. Восстановительное и окислительное действие электрического тока во много раз сильнее действия химических восстановителей и окислителей. Так, ни один окислитель не может отнять у фторид-иона F– его электрон. Поэтому долгое время фтор не могли получить в свободном состоянии, хотя его соединения широко распространены в природе. Окисление у фторид-иона удалось лишь при электролизе раствора фторида калия во вто-роводородной кислоте.

В этом случае на аноде выделяется фтор (F– – 2ē = F2), а на катоде – водород (2Н+ + 2ē = H2).

NaCl

катод Na+ + Cl– анод

Сущность электролиза удобно изображать с помощью схемы, которая показывает диссоциацию электролита, направление движения ионов, процессы на электродах и выделяющиеся вещества. Схема электролиза расплава хлорида натрия выглядит так:

Nа+ + ē = Nа      2Cl– – 2ē = Сl2

Для проведения электролиза электроды погружают в расплав или раствор электролита и соединяют их с источником постоянного тока. Прибор, в котором проводят электролиз, называют электролизером или электролитической ванной.

Электролиз водных растворов электролитов

Надо различать электролиз расплавленных электролитов и их растворов. В последнем случае в процессах могут участвовать молекулы воды.

В качестве примера рассмотрим электролиз концентрированного водного раствора хлорида натрия (электроды угольные). В этом случае в растворе находятся гидратированные ионы Nа+ и Cl -, а также молекулы воды. При прохождении тока через раствор катионы Nа+ движутся к катоду, а хлорид-ионы

Cl– – к аноду. Однако реакции, протекавшие на электродах, существенно отличаются от реакций, идущих в расплаве соли. Так, на катоде вместо ионов натрия восстанавливаются молекулы воды:

2Н2O + 2ē = H2O + 2OH-

а на аноде окисляются хлорид-ионы:

2Cl– – 2ē = Сl20

В итоге на катоде выделяется водород, на аноде – хлор, а в растворе (вблизи катода) накапливается гидроксид натрия NаОН (отрицательные заряды ионов ОН– компенсируются положительными зарядами ионов Na+). Общее уравнение электролиза водного раствора NaCl в ионной форме имеет вид:

2Н2O +2Cl– электролиз H2 + Сl2 + 2OH-

или в молекулярной форме:

2Н2O + 2NaCl      электролиз H2 + Сl2 + 2NaOH

Катодные и анодные процессы. Как же протекает восстановительный процесс на катоде в водных растворах?

Ответ можно получить с помощью ряда стандартных электродных потенциалов. Здесь возможны три случая (в нейтральной сфере):

катионы металлов, имеющих больший потенциал (стандартный электродный), чем у водорода (от Сu2+ до Au3+), при электролизе практически полностью восстанавливаются на катоде;

катионы металлов, имеющих малый стандартный электродный потенциал (от Li+ до Fe2+ включительно), не восстанавливаются на катоде, а вместо них восстанавливаются молекулы воды до водорода;

катионы металлов, имеющих стандартный электродный потенциал, меньший, чем у водорода, но больший чем у алюминия (от AL3+ до Н+), при электролизе на катоде восстанавливаются одновременно с молекулами воды.

Если же водный раствор содержит катионы различных металлов, то при электролизе выделение их на катоде протекает в порядке уменьшения алгебраической величины стандартного электродного потенциала, соответствующего металла. Так, из смеси катионов Ag1+, Cu2+, Fe2+ сначала будут восстанав-

ливаться катионы серебра (Е = +0,80 В), затем катионы меди (Е° = +0.34 В) и последними катионы железа (Е° = -0.44 В).

Характер реакций, протекающий на аноде, зависит как от присутствия молекул воды, так и от вещества, из которого сделан анод. Обычно аноды подразделяют на нерастворимые и растворимые. Первые изготавливаются из угля, графита, платины, иридия; вторые – из меди, серебра, цинка, кадмия, никеля, и других металлов.

На нерастворимом аноде в процеосе электролиза происходит окисление анионов или молекул воды. При этом анионы бескислородных кислот (например S2-, J-, Br-, Cl-) при их достаточной концентрации легко окисляются. Если же раствор содержит

анионы кислородных кислот (например, SO42-, NO3 -,CO32 -, PO43-) то на аноде окисляются не эти ионы, а молекулы воды с выделением кислорода.

Растворимый анод при электролизе сам подвергается окислению, т.е. посылает электроны во внешнюю цепь. При отдаче электронов смещается равновесие между электродом и раство-

ром:

Ме <==========> Men+

+ пē

металл

уходят в

уходят во

анода

раствор

внешнюю цепь

и анод растворяется.

Применение электролиза

Электролиз находит весьма широкое применение. Для защиты металлических изделий от коррозии на их поверхность наносится тончайший слой другого металла – хрома, серебра, золота, меди, никеля и т.д. Иногда применяют многослойные покрытия. Например, внешние детали автомобиля сначала покрывают тонким слоем меди, на медь наносят тончайший слой никеля, а на него – слой хрома.

Нанесенные на металлы электролизом покрытия получаются ровными по толщине, прочными, служат долго, и кроме того, таким способом можно покрывать изделия любой формы. Эту отрасль прикладной электрохимии называют гальваностегией. Кроме защиты от коррозии, гальванические покрытия иногда придают красивый декоративный вид предметам.

Другая отрасль электрохимии, близкая по принципу к гальваностегии, названа гальванопластикой. Это получение точных металлических копий, с различных предметов. Предмет, с которого хотят изготовить копию, покрывают воском, дают воску застыть и получают восковую матрицу, на которой все углубления копируемого предмета будут выпуклостями. Внутреннюю поверхность матрицы покрывают тонким слоем графита, проводящим электрический ток. Этот графитовый катод опускают в ванну с раствором сульфата меди; анодом служит медь. При электролизе медный анод растворяется, а на катоде осаждается медь. Таким образом получается точная медная копия пред-мета. С помощью гальванопластики изготовляют клише для печати, грампластинки, металлизируют различные предметы. Гальванопластика открыта русским ученым Б.С.Якоби (1838).

Электролиз используется для получения многих металлов-щелочных, щелочноземельных, алюминия, лантаноидов и др.,

также для очистки некоторых металлов от примесей.

дальнейшем при изучении химии вы встретитесь с другими важными применениями электролиза в технике, искусстве, быту.

Коррозия металлов

Металлы подвергаются коррозии. Под коррозией понимают разрушение металла под воздействием окружающей среды. Это самопроизвольный окислительно-восстановительный процесс. По механизму протекания разрушения различают два типа коррозии: химическую и электрохимическую.

Химической коррозией называется разрушение металла окислением его в окружающей среде без возникновения электрического тока в системе.

В этом случае происходит взаимодействие металла с составными частями среды – с газами и неэлектролитами.

Большой вред приносит разновидность химической коррозии -так называемая газовая коррозия, т.е. соединение металлов с кислородом воздуха. Скорость окисления многих металлов сильно возрастает при повышении температуры.

Так, на железе уже при 250-300°C появляется видимая пленка оксидов. При 600°С и выше поверхность металла покрывается слоем окалины, состоящей из окислов железа различной степени окисления: FeO, Fe3O4, Fe2O3. Окалина не защищает

железо от дальнейшего окисления, так как содержит трещины и поры, которые облегчают доступ кислорода к металлу. Поэтому при нагревании железа свыше 800°С скорость окисления его очень быстро растет.

Примером химической коррозии в неэлектролитах может служить разрушение цилиндров двигателей внутреннего сго-рания. В топливе содержатся примеси – сера и ее соединения, которые при сгорании превращаются в оксиды серы (IV) и (VI) – коррозионно-активные вещества. Они разрушают детали реактивных двигателей – сопла и др. Наибольший вред приносит электрохимическая коррозия.

Электрохимической коррозией называется разрушение металла в среде электролита с возникновением внутри системы электрического тока.

этом случае наряду с химическими процессами (отдача электронов) протекают и электрические (перенос электронов от одного участка к другому).

качестве примера электрохимической коррозии можно привести коррозию железа в контакте с медью в растворе электролита соляной кислоты (т.е. при высокой концентрации ио-нов водорода Н+). При таком контакте возникает гальванический элемент.

Как показано на рисунке более активный металл – железо (анод) окисляется, посылая электроны атомам меди, и переходит в раствор в виде ионов Fe2+, образуя с хлорид-ионами среды хлорид железа(II) FeCl2.

Ионы же водорода движутся к меди (катоду), где, принимая электроны, разряжаются.

ионной форме эти реакции могут быть выражены суммарным уравнением:

Fе0 – – 2ē = Fе2+

2Н+ + 2ē =H2.

Fe + 2H+ = Fе2+ + H2.↑

или

Fe + 2HCl = FeCl2 + H2↓↓

или

На катодах вместо разряда ионов водорода (или молекул воды) может протекать процесс восстановления кислорода, растворенного в электролите:

O2 + 2H2O + 4ē = 4OH-,

т.е. связывание электронов на поверхности катода осуществляется молекулами кислорода. Это так называемая кислородная деполяризация катода. Какой процесс будет протекать, зависит от условий: в кислой среде выделяется водород (происходит водородная деполяризация катода: 2Н + + 2ē =H2.), в нейтральной и щелочной средах (при коррозии стали, железа) происходит кислородная деполяризация катода и водород не выделяется. В этом случае образовавшееся гидроксидионы ОН-

соединяются с перешедшими в раствор ионами Fe2+:

Fe2+ + 2OH– = Fe(OH)2

Гидроксид железа (II) в присутствии воды и кислорода воздуха переходит в гидроксид железа (III):

4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3

Гидроксид железа (III) можно представить как

2Fe2O3• nH2O

Электрохимическую коррозию вызывают главным образом примеси других металлов и неметаллических веществ или неоднородность поверхности. Согласно теории электрохимической коррозии в этих случаях при соприкосновении металла с электролитом (электролитом может быть влага, адсорбируемая из воздуха) на его поверхности возникают гальванические микроэлементы. При этом металл с более отрицательным потенци-алом разрушается – ионы его переходят в раствор, а электроны переходят к менее активному металлу, на котором происходит восстановление ионов водорода (водородная деполяризация) или восстановление растворенного в воде кислорода (кислородная деполяризация).

Таким образом, при электрохимической коррозии (как в случае контакта разнородных металлов, так и в случае образования микрогальванических элементов на поверхности одного металла) поток электронов направлен от более активного металла к менее активному (проводнику), и более активный металл корродирует.

Скорость коррозии тем больше, чем дальше расположены друг от друга в ряду стандартных электродных потенциалов те металлы, из которых образовался гальванический элемент (гальваническая пара).

На скорость коррозии влияет и характер раствора электролита. Чем выше его кислотность (т.е. меньше pH), а также чем больше содержание в нем окислителей, тем быстрее протекает коррозия. Значительно возрастает коррозия с ростом температуры.

Некоторые металлы при соприкосновении с кислородом воздуха или в агрессивной среде переходят в пассивное состояние, при котором резко замедляется коррозия. Например, концентрированная азотная кислота легко делает пассивным железо, и оно практически не реагирует с концентрированной азотной кислотой. В таких случаях на поверхности металла образуется плотная защитная оксидная пленка, которая препятствует контакту металла со средой.

Защитная планка всегда имеется на поверхности алюминия. Подобные пленки в сухом воздухе образуются также на Be, Cr, Zn, Ta, Ni, Cu и других металлах. Кислород является наиболее распространенным пассиватором.

Пассивированием объясняется коррозионная стойкость нержавеющих сталей и сплавов.

Защита от коррозии

Коррозия металлов протекает непрерывно и причиняет огромные убытки. Подсчитано, что прямые потери железа от коррозии составляют около 10 % его ежегодной выплавки. В результате коррозии металлические изделия теряют свои ценные технические свойства. Поэтому имеют очень большое значение методы защиты металлов и сплавов от коррозии. Они весьма разнообразны. Назовем некоторые из них.

Защитные поверхностные покрытия металлов

Они бывают металлическими (покрытие цинком, оловом,

свинцом, никелем, хромом,

и другими металлами) и неметаллическими (покрытие лаком, краской, эмалью и

другими веществами). Эти покрытия изолируют металл от внешней среды. Так, кровельное железо покрывают цинком: из оцинкованного железа изготавливают многие изделия бытового и промышленного значения. Слой цинка предохраняет железо от коррозии, так как хотя цинк и является более активным металлом, чем железо (см. ряд стандартных электродных потенциалов металлов), он покрыт оксидной пленкой. При повреждениях защитного слоя (царапины, пробои крыш и т.д.)

присутствии влаги возникает гальваническая пара Zn/Fe. Катодом (положительным полюсом) является железо, анодом (отрицательная полюсом) – цинк. Электроны переходят от цинка к железу, где связываются молекулами кислорода (кислородная деполяризация), цинк растворяется, но железо остается защищенным до тех пор, пока не разрушится весь слой цинка, на что требуется довольно много времени. Покрытие железных изделий никелем, хромом, помимо защиты от коррозии, придает им красивый внешний вид.

Создание сплавов с аникоррозионными свойствами. Введе

нием в состав стали до 12 % хрома получают нержавеющую сталь, устойчивую к коррозии. Добавки никеля, кобальта и меди усиливают антикоррозионные свойства стали, как повышает склонность сплавов к пассивации. Создание сплавов с антикоррозионными свойствами – одно из важных направлений борьбы с коррозионными потерями.

Протекторная защита и электрозащита. Протекторная за-

щита применяется в тех случаях, когда защищается конструкция (подземный трубопровод, корпус судна), находящаяся

среде электролита (морская вода, подземные, почвенные воды и т.д.). Сущность такой защиты заключается в том, что конструкцию соединяют с протектором – более активным металлом, чем металл защищаемой конструкции. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии

протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию. По мере разрушения протекторов их заменяют новыми.

На этом принципе основана и электрозащита. Конструкция, находящаяся в среде электролита, также соединяется с другим металлом (обычно куском железа, рельсом и т.п.), но через внешний источник тока. При этом защищаемую конструкцию присоединяют к катоду, а металл – к аноду источника тока.

Электроны отнимаются от анода источником тока, анод (защищающий металл) разрушается, а на катоде происходит восстановление окислителя.

Электрозащита имеет преимущество перед протекторной защитой: радиус действия первой около 2000 м, второй – около 50 м.

Изменение состава среды. Для замедления коррозии металлических изделий в электролит вводят вещества (чаще всего органические), называемые замедлителями коррозии, или ингибиторами. Они применяются в тех случаях, когда металл следует защищать от разъедания кислотами. Советские ученые создали ряд ингибиторов (препараты марок ЧМ, ПБ и др.), которые, будучи добавлены к кислоте, в сотни раз замедляют рас-творение (коррозию) металлов.

В последние годы разработаны летучие (или атмосферные) ингибиторы. Ими пропитывают бумагу, которой обертывают металлические изделия. Пары ингибиторов адсорбируются на поверхности металла и образуют на ней защитную пленку.

Ингибиторы широко применяются при химической очистке от накипи паровых котлов, снятии окалины с обработанных изделий, а также при хранении и перевозке соляной кислоты в стальной таре. К числу неорганических ингибиторов относятся нитриты, хроматы, фосфаты, силикаты. Механизм действия ингибиторов является предметом исследования многих химиков.

Девиз : «ВЕЩЬ В СЕБЕ»

ЛЕКЦИЯ 13

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

План:

Термин комплексные соединения (КС) и история их открытия.

Основные положения координационной теории Альфреда Вернера.

Пространственное строение и изомерия КС.

Природа химической связи

Диссоциация в растворах. Константа нестойкости (КНЕСТ).

Где и для чего их применяют.

1. Соединение высшего порядка – так называл знаменитый шведский химик И.Я.Берцелиус (1779-1848) сложные многокомпонентные химические соединения, строение которых очень долго оставалась загадкой для ученых. Данный термин широко использовал А.Вернер и многие другие ученые конца XIX и начала XX века. Теперь эти соединения называют комплексными, но чаще – координационными. Термин “комплексные соединения” введен в химическую литературу выдающимся физико-химиком В.Оствальдом. Координационными их стали называть после того, как в умах ученых утвердилась координационная теория А.Вернера описывающая строение данных соединений.

Почему высшего порядка? Бросается в глаза, что эти сложные (комплексные) соединения можно рассматривать как состоящие из простых, способных к самостоятельному существованию. Например, при растворении AgCl в водном растворе аммиака получается соединение [Ag(NH3)2]Cl (хлорид диамин серебра (1), формулу которого можно записать AgCl • 2NH3 Действительно, это сложное соединение состоит из простого, давно известного AgCl и также хорошо известного NH3. Конечно же, и то и другое способно к самостоятельному существованию. Однако, в К.С. AgCl и NH3 кардинально изменяют свои свойства.

Время рождения координационной химии как науки связы-вают со случайным получением в 1798 году Тассером соединения CoCl3 • 6NH3. Между тем были известны соединения высшего по-рядка и до открытия Тассера. Вероятно, первым подобным соединением, синтезированным в лаборатории, является берлинская лазурь Fe4[Fe(CN)6]3. Она случайно получена художником Дисбахом в 1704г. Ииспользована как красящий пигмент.

На несколько миллиардов лет раньше, природа создала такие соединения высшего порядка как FeSO4 • 7H2O и СuSO4 • 5H2O

(железистый и медный купороc). Первое встречается в виде минерала механтерита, второй в виде халькантита. Человеку они стали известны уже в XIII веке.

Из берлинской лазури и едкого калия Макер в 1749 году впервые получил желтую кровяную соль K4(Fe(CN)6).

Итак, соединения высшего порядка были известны и до Тассера. Однако, только после получения CoCl3 • 6NH3 химики осознали, что имеются соединения, не вписывающиеся ни в какие привычные категории (Петух не делает утра, но он будит).

В становлении и развитии химии К.С. большой вклад был внесен шведскими и датскими химиками Берцелиусом, Бломстрандом, Клеве, Иергенсен. В конце XIX века, центром по изучению химии К.С. стал Цюрих, где работал создатель координационной теории Альфред Вернер. После его кончины важные исследования были выполнены в Германии его учеником Паулем Пфейфером. В начале текущего столетия наибольший прогресс в этой области химии достигнут в нашей стране благодаря Льву Александровичу Чугаеву, который создал уникальную со-ветскую школу химиков-комплексников. Следует отметить, что еще в конце XIX столетия яркий цикл исследований по химии комплексных соединений выполнен в России Николаем Семеновичем Курнаковым. Огромный вклад в химию К.С. внесли Чатт в Великобритании, Дж.Бейлар в США, Л.Силлен в Швеции

многие другие ученые в различных странах.

Теоретические представления о К.С. развивались на основе прочных комплексов довольно узкого круга металлов: КОБАЛЬТА (III), ПЛАТИНЫ (II), ПЛАТИНЫ (IV), ХРОМА (II), МЕДИ(П). Синтез проводился из их солей, а в качестве другой составляющей широко использовался аммиак.

Одной из важнейших вех на пути к координационной теории были аммонийная гипотеза английского ученого Т.Грэма (1840г.). Он усматривал аналогию между взаимодействием ам-

миака с кислотами и с солями металлов.

NH3 + HCl → {H+NH3}Cl

2NH3 + CuCl2 → {Cu2+(NH3)2}Cl2

Эту догадку можно отнести к числу гениальных прозрений. Трудности у Грэма возникали в связи с тем, что число молекул аммиака, присоединившихся к металлу, например в CoCl3 • 6NH3, часто было больше, чем число эквивалентов металла или, говоря современным языком, число присоединившихся молекул аммиака часто превышало степень окисления иона металла (III и 6).

В середине ХIХ века комплексообразование иногда трактовалось как переход III азота в V азот по уравнению:

Грем полагал, что вместо одного из атомов водорода в аммо-нийном ионе находится металл:

Известно, что ковалентность азота – З(2р3), и 5-и валентным он быть не может.

В 1851 году немецкий ученый А.Гофман высказал мысль о том, что атом водорода в аммонийном радикале способен замещаться на другой аммонийный радикал:

Связи N-Cl везде одинаковые, однако, при прибавлении AgNOхлора3. (изб.) в осадок (AgCl) переходили только два атома Следующий шаг сделал швед К.В.Бломстранд (1869г.). Строение хлорида аммония он выразил Н–NH3–Cl. Атом Н способен замещаться металлом, а пятивалентные атомы азота способны соединяться между собой, образуя цепи – NH3—NH3 – (по аналогии с органическими соединениями). По мнению Бломстранда, стабильность цепи атомов зависит от природы атома металла. Платина и медь обеспечивают устойчивость цепи, образованной только двумя атомами азота, а Co, Ni, Ir, Rh способны стабилизировать цепи боль-

шей длины.

Бломстранд ошибочно считал, что соединение CoCl3 имеет формулу Co2Cl6, поэтому составу CoCl3 • 6NH3 он приписывал структуру:

Если Cl связан с Co, то при добавлении AgNO3 AgCl не вы

падает CoCl3 • 5NH3

Датский ученый Иергенсен установил, что молекула CoCl3 • 6NH3 соответствует именно этой формуле. Исходя из химических свойств:

Цепи двух типов:

Однако, можно было получить два комплекса состава CoCl3 • 4NH3 резко отличающихся по свойствах (одно – зеленого, другое – фиолетового цвета). Цепная теория была бессильна объяснить различное строение изомеров состава CoCl3

• 4NH3.

Критика Менделеевым цепной теории:

«Цепь аммиаков может быть, повидимому, беспредельна, и, нам кажется, наиболее существенный недостаток такого представления и состоит именно в том, что оно не указывает вовсе на число аммиаков, могущих удерживаться платиной. Притом допустить связь азота с азотом в столь прочных телах едва ли возможно»…

Гете отмечал: «что носится в воздухе и чего требует время, то может возникнуть одновременно в ста головах без всякого заимствования».

Теория, хорошо отражающая в то время строение соединений высшего порядка, создана в Цюрихе (Швейцария) Альфредом Вернером.

Вернер родился в 1866г. в городе Мюлузе (Эльзас) в семье рабочего. Впоследствии купил ферму и занялся разведением племенного скота.

Увлечение химией у будущего творца координационной теории проявилось в юношеском возрасте, когда он, после окончания начальной школы, учился в Техническом училище. Для химических экспериментов в домашних условиях родители Альфреда отвели сарай.

Окончив военную службу, Вернер решил не возвращаться в Эльзас. Причиной этому была напряженная политическая обстановка, в условиях которой проводилось «онемечивание» населения Эльзаса. В 1889г. он окончил Цюрихский политехникум со званием технического химика. Ему была предложена неоплачиваемая должность ассистента химикотехнической лаборатории. Однако, эта должность давала возможность заниматься любимым делом. Только энергичная творческая деятельность должна была разрешить финансовые затруднения молодого специалиста. Всего менее чем через 4 года им создана теория, точнее целое мировоззрение в химии.

80-е годы прошлого столетия ознаменовались многочисленными и крупными достижениями органической химии.

Под руководством любимого учителя А.Ганча он стал работать над диссертацией. Профессор Цюрихского университета Артур Ганч синтезировал много новых азотсодержащих органических соединений и изучал их строение, Ганч предложил Вернеру заняться стереохимией азотсодержащих соединений. Это была малоразработанная область органической химии. Уже в 1890г. вышла статья Ганча и Вернера «О пространственном расположении атомов в азотсодержащих молекулах». В ней стереохимия азотсодержащих соединений получила прочную научную основу. Вернер высказал идею о том, что три валентности атома азота в некоторых соединениях направлены к углам тетраэдра, четвертый угол занимает сам атом азота. Работа вошла в диссертацию Вернера по стереохимии азотсодержащих соединений.

После защиты он писал родителям: «С возрастом я становлюсь энтузиастом, часто охватывает экстаз перед красотой моей науки. Чем дальше я погружаюсь в ее тайны, тем больше она кажется мне огромной, величественной, слишком красивой для простого смертного».

Чтобы стать приват-доцентом конкурсная работа «К теории сродства и валентности» была представлена в 1891 году.

В термохимической лаборатории в Париже Вернер выполнил первое исследование по неорганической химии «Об основном нитрате кальция».

Летом 1892 года Вернер приступил к чтению лекций: «Атомная теория», «Избранные темы неорганической химии», «Сравнительная органическая химия» (одной из тем – комплексные соединения).

Статья «О строении неорганических соединений» вышла в

1893 году.

Вернер обратил внимание на одно чрезвычайно важное обстоятельство. Аналитические данные для большого числа К.С. свидетельствовали о том, что число нейтральных молекул, присоеди-няющихся к молекулах соли металла, чаще всего равно 6 или 4.

CoCl3 • 6H2O, CoCl2 • 6H2O, CrCl3 • 6NH3, CoCl3 • 6NH3, CoCl2 •6NH3,

NiCl2 • 6NH3, PtCl4 • 6NH3, СuCl2 • 4NH3, PdCl2 • 4NH3, PtCl3 • 4NH3.

Вернер на основании этого пришел к заключению, что в КС имеется центральный атом (ион металла), вокруг которого координируются нейтральные молекулы или кислотные остатки. Эти группы называются ЛИГАНДАМИ. ЛИГАНД– СВЯЗАННЫЙ. Число координированных лигандов чаще всего 4 или 6.

Число лигандов окруженное центральным атомом называет-ся КООРДИНАЦИОННЫМ ЧИСЛОМ. Лиганд занимает около центрального атома координационное место (позицию).

В настоящее время известно много органических молекул, которые занимают несколько координационных мест. Если лиганд занимает I координационное место – монодентатный, два – дидентатный, три – тридентатный. Центральный атом часто называется комплексообразователем.

При координации изменяются свойства как лигандов, так и иона металла – комплексообразователя.

Часто координированные лиганды и ион металла невозмож-но обнаружить при помощи химических реакций, характерных для них в свободном состоянии.

Совокупность иона металла и окружающих его лигандов названа Вернером внутренней сферой комплекса. Ее обычно заключают в квадратные скобки. Все остальное в КС составляет внешнюю сферу и пишется за квадратными скобками.

Первой задачей на пути исследования строения КС – является установление состава внутренней сферы. СoCl3 • 6NH3. Центральный атом – ион кобальта (III). Действительно, при

действии щелочи на раствор комплекса не происходит образо-вания Со(ОН)3.

Нейтральные лиганды, как правило, входят во внутреннюю сферу комплекса. Можно убедиться (фенолфталеин), что свободного NH3 в растворе нет. Хлорид ионы осаждаются ионами серебра в виде AgCl. По массе осадка можно убедиться, что все ионы Cl– переходят в AgCl.

Таким образом [Co(NH3) 6] 3+ осаждение Cl– показало, что все три хлорид-иона во внешней сфере.

Следовательно [Co(NH3) 6] Cl3 в целом нейтрально. Положительный заряд комплексного иона компенсировал отрицательный заряд трех хлорид-ионов.

После количественного осаждения ионов Cl– нитратом серебра и отделения осадка и выпаривания раствора выделится КС.

Таким образом, произошло замещение Cl– на NO3

[Co (NH3) 6]Cl3 + 3AgNO3 = [Co(NH3) 6](NO3) 3 + 3AgCl

Вернер будучи хорошо знаком с трудами Ле Беля и Вант-Гоффа – основоположников учения о стереохимии и сам внес в него значительный вклад.

Он предположил, что КС с координационным числом 6 имеют конфигурацию октаэдра, в центре которого находится ион металла а лиганды в его вершинах.

КС с координационным числом 4 – тетраэдрическое или плоскоквад-ратное строение

Для комплексов состава CoCl3 • 4NH3 лиганды могут

быть расположены по двум вариантам:

Октаэдрическая конфигурация допускает существование

двух изомерных форм.

Для комплексов состава PtCl2 • 2NH3 получены две изомерные ормы. Тетраэдрическое строение этих комплексов не должно приводить к соединениям с различным строением. Как не переставляй лиганды Cl– и NH3 вокруг центрального иона, получите лишь один вариант строения. Если же комплексы состава PtCl2 • 2NH3 построены по типу квадрата, то возможны два варианта:

Поскольку изомерные формы были известны, то Вернер при-писал комплексам платины (П) строение плоского квадрата.

4. Одной из трудностей, возникших на пути признания координационной теории, было ее разногласие с существовавшей теорией валентности. Рамки теории валентности оказались узкими для К.С. Действительно, если соединение PtCl2 соответс-

твовало теории валентности, то строение его комплексного производного PtCl2•2KCl, т.е. K 2[PtCl4], не могло быть объяснено

с тех же позиций. Ион Pt (П) в этом комплексном соединении связан с четырьмя кислотными остатками. Существовавшая теория валентности допускала образование между ними и ионами Cl– только двух химических связей. Вернеру пришлось ввести понятия главной и побочной валентности. В простых соединениях атомы связаны главными валентностями. После их насыщения центральный атом способен присоединять дополнительные атомы или молекулы за счет побочных валентностей.

Относительно природы главных и побочных валентностей Вернер предпочитал не высказываться.

После создания координационной теории стало ясно,

что классические представления о валентности слишком узки. Например, валентность железа в Fe(CN)3 равна трем, а

в [Fe(CN ) 6]3– – шести. По существу валентность стали отожрестало играть для химии столь важную роль. Вместо понятия валентности химики стали все чаще пользоваться координационным числом в совокупности со степенью окисления.

Образование многих К.С. можно в первом приближении объяснить электростатическим притяжением между центральным катионом металла и анионами или полярными молекулами ли-гандов.

Наряду с силами притяжения действуют и силы электростатического отталкивания одноименно заряженными (одинаково ориентированными) лигандами. В результате образуется наиболее устойчивая группировка атомов (ионов), обладающая минимальной потенциальной энергией.

Количественные расчеты на основе такой электростатической модели впервые были выполнены В.Косселем и А.Магнусом, ко-торые принимали ионы за недеформируемые шары и учитывали их взаимодействие по закону Кулона. Результаты этих расчетов удовлетворительно передают зависимость координационного числа от заряда центрального иона. Однако электростатическая теория не в состоянии объяснить избирательность (специфичность) комплексообразования, поскольку она не принимает во внимание природу центрального атома и лигандов, особенности строения их электронных оболочек. Для учета этих особенностей теория была дополнена поляризационными представлениями, согласно которым комплексообразованию благоприятствует участие в качестве центральных атомов небольших многозарядных катионов d-элементов, обладающих сильным поляризующим действием, а в качестве лигандов – больших, легко поляризующихся ионов или молекул. В этом случае происходит деформация электронных оболочек центрального атома и лигандов, приводящая к их взаимопроникновению, что и вызывает упрочнение связей.

5. На первых порах развитие координационной химии ученым было легче оперировать константами неустойчивости К.С., так как они по форме и смыслу напоминали константы диссоциации слабых многоосновных кислот. Например, первая ступень диссоциации комплексного иона

[HgJ4]2– < == > [HgJ4]– + [J-]

дествлять с координационным числом. С этой точки зрения валентности в вышеназванных соединениях одинаковы. Такое расширение понятия валентности привело к тому, что оно пе-

и Кнест:

Kнест      = [HgJ4]– [J ]-

[HgJ4]2-

аналогична H3PO4 < == > H2PO4– + H+

Kд =      [H2PO4]– [H+]

[H3PO4]

Поэтому расчет концентраций отдельных комплексных форм проводили так же, как расчет концентраций ионов многоосновных кислот. Далее оказалось удобнее использовать константу устойчивости, которая является обратной величиной Ку = 1/Кн.

6. Реагенты (α-нитрозо– β-нафтол (1) и 8-оксихинолин (II) начали применять в качестве аналитических реагентов еще до создания координационной теории.

Видно, что координируясь посредством электронных пар, отмеченных в формулах, эти реагенты способны замыкать около иона металла 5-членные циклы. Широкое использование этих и других органических реагентов для определения ионов металлов началось после эффектного использования Чугаевым диметилглиоксима в качестве реагента на ион никеля. Красивый яркий малиновый цвет осадка при полнейшей безвредности для организма человека использован парфюмерами для изготовления губной помады.

Большая роль Чугаева как одного из основателей нового направления в аналитической химии связана с установлением понятия о конкретной функционально-аналитической группировке, позволяющего судить о том, какие именно функциональные группы участвуют в образовании координационных связей. В настоящее время на образовании К.С. основаны гравиметрический, волюметрический, фотометрический, экстракционный и другие методы анализа.

Явление комплексообразования используют для маскировки конкретных ионов, для переведения отдельных ионов в осадок в виде малорастворимых соединений или для удерживания их в растворе.

С помощью комплексов металлов удается определять не только отдельные органические соединения, но и их изомерные формы.

М.Пейроне получено соединение цис-Pt(NH3)2CI2, играющее в настоящее время важную роль в химиотерапии рака

(1845г.).

В середине нашего столетия создавались новые отрасли химической индустрии и цветной металлургии. Это отрасли по производству редких и рассеянных хищнических элементов и материалов, на их основе. Во многих случаях задачи решались при использовании конкретных К. С.

Примечательно высказывание выдающегося английского хи-мика Дж.Чатта: «Возможно, не случайным было и то, что единственная страна, которая посвятила значительную часть своих усилий в области химических исследований в 20-х и 30-х годах разработке координационной химии, была и первой страной, пославшей ракету на Луну».

Огромную роль сыграли соединения платиновых металлов

развитии координационной химии. И, наоборот, развитие ее как самостоятельной науки позволило разработать технологии промышленного получения платиновых металлов: палладия, родия, рутелия, иридия, осмия.

Важно отметить, что смешанные оксиды на основе платиновых металлов обладают кроме высокой электрической проводимости, высокой химической стойкостью (не растворяются

«царской водке») и термической устойчивостью. Ведутся работы по замене серебра в светочувствительных композициях. Новейшие сведения в этой области химии в рамках нового научного направления представлены в нашей монографии (см. список литературы).

ЛЕКЦИЯ 14

ОБЩИЕ СВОЙСТВА МЕТАЛЛОВ

И ИХ СОЕДИНЕНИЙ

ПЕРСПЕКТИВЫ ЗАМЕНЫ МЕТАЛЛОВ

План:

1.Расположение в таблице, нахождение в природе, получение и химические свойства металлов. Технологии обработки металлов.

Пластики и полимеры.

Новые методы синтеза.

Заключение.

1. Расположение в периодической системе.

1 – щелочные

nS1

C.O+1S-металлы

II – Ве, Мо, щелочно-

nS2

+2

земельные

III – Al , п/ер,

nS2np 1

+3

nS2np 2

+2,+4

IV – п – гр. Уе

nS2np 3

+3,+5

V – Sb, Bi

nS2(n-1)d1-10

+2

до Comax = N гр D

III-VIII -II B

nS2(n-1)d1(n14-2)f1-14

+3

до +7 – f металлы

2. Нахождение в природе.

Аl(8,45 % по массе)-Fе (4,4 %-Са(3,3 %)-Nа(2,6 %)-К(2,5%)-Mg(2,1 %).

Благородные – в самородном состоянии; остальные в виде руд:

оксиды – Fe 3O4, Al2O3, TiO2, MnO2 сульфиды – Cu2S, ZnS, FeS2, PbS

3. Способы получения.

Пирометаллургические:

I. Собственно пирометаллургия

1. обжиг      2Сu S + 3O2 = 2CuO + 2SO2

2. восстановление      СиО + C = Cu ↑ + CO (карботермия)

CuO + CO = Cu + CO2

CuO + H2 = Cu + H2O (гидротермия)

3СuO + 2Al = 3Cu + Al2O3 (металлометрия)

II. Пироэлектрометаллургия

K(-)А13+ + 3ē → Аl° (расплав).

III. Хлорная металлургия: ТiС14 + 2Мg = 2MgCl2 + Ti

IV. Термический диссоциация летучих соединений

Ni(CO)4 = Ni + 4CO; TiJ4 = Ti° + 2J2

Гидрометаллургические:

I. Химический способ

Ag2S + 4KCN = 2K[Ag(CN )2] + K2S

2K [Ag(CN )2] + Zn = K2[Zn(CN )4] + 2Ag

II. Пироэлектрометаллургия

К(-)Ni2+ + 2ē → Ni°(раствор)

Физические свойства.

I. Три типа кристаллических решеток:

гексагональная (к.ч. = 12)

кубическая гранецентрированная (к.ч. = 12)

кубическая объемноцентрированная (к.ч. = 8)

Электропроводность (Ag – Hg)

Отражение света и радиоволн (Ag)

Ковкость пластичность (Au, Cu )

Твердость (твердые (Cr), мягкость (Cs)

Плотность (легкие с ρ < 5 г/см3, Be, Mg, Аl, Тi,)

тяжелые с ρ > 5 г/см3, W, Os

7. Плавкость (тугоплавкие с tпл> 1500° С с W, Mo, Nb, Ta легкоплавкие с tпл < 1000° С c S-металлы)

5. Химические свойства.

Все металлы – восстановители: M° – nē → Mn+ Отношение к агрессивным средам (окислителям) определя-

ется:

φ°, B – станд.электр.лотенциалом

«J», кДж/моль энергией ионизации

Наличием на поверхности металла защитной оксидной пленки

Агрессивные среды

1. Неметаллы – Э (галогены, кислород)

Mo – nē + Эо → Мn+ + Эn-

Вода (М с φ° < 0)

+ n НОН = Me(OH ) n + n/2(H2)

Кислоты

• кислоты не окислители (Мe, φ° <0)

HCl, H2SO4 разб.

М° + НА → МА + n/2(H2)

n + → min C.O.

• к-ты окислители (все М)

HNO3, H2SO4 конц.

M со С.О. ≥ 4 с HNO3 образуют свои кислоты С.О. мах)

3Rе + 7HNO3 = 3HReO4 + 7NO + 2H2O

царская водка:

3 об. HCl конц. + I об. HNO3 конц.

А + 3НСl + HNO3 = АuСl3 + NO + 2H2O HCl + AuCl3 = H[AuCl4]

(Пассивирование металлов – HNO3, H2SO4 к)

4. Щелочи (для амфотерных металлов)

M + H2O + KOH – KX [M(OH )У ] + n/2(H2)

Cоединения металлов

хим. активны

неактивны

твердые, тугоплавкие

карбиды

электропроводны

ацетилениды

WC, W2C, TaB

CaC2+2H2O=Ca(OH)2+C2H2

не действуют даже

метаниды

сильные окислители

Be2C+4HCl=2BeCl2+CH4

коррзионностойкие

Кислотно-основные свойства кислородных соединений

с ростом С.О. основные

амфотерные

кислотные

СrO

Cr2O3

C2O3

Cr(OH)2

Cr(OH)3

H2CrO4

Окислительно-восстановительные свойства соединений

соединения со С.О мин.

– восстановители

со С.О макс.

– окислители

Mn+2

со С.О. пром. – и восстановители и окислители

– восстановитель

Mn+7

– окислитель

Mn+4

– восстановитель и окислитель

ПЛАСТИКИ И ПОЛИМЕРЫ

Простые элемент – ИДЫ)

М+Э – Мn+ + Эn-(«ЭО»)

Гидриды (Н-) Галиды (Г-) Оксиды (О-2) Нитриды (N-3) Карбиды (С– 4) Бориды (В-3)

Комплексные

4FeCl3+3K4[Fe(CN)4]=Fe4 [Fe(CN)6]3 + 12KCl

3FeCl2+2K3[Fe(CN)6]=Fe3[Fe(CN)6]2+6KCl

Природные полимеры распространены достаточно широко, это, например, белки и целлюлозы. Полимеры представляют собой соединения с длинными молекулами, построенными как последовательность повторяющихся идентичных химических единиц, связанных в цепи ковалентными связями. Возможно, основные сведения о способах синтеза полимеров химии приобрели, пытаясь получить синтетический аналог натурального каучука» Сегодня химики создали так много полимеров столь разнообразного целевого назначения, что уже трудно пред-ставить себе современное общество лишенным возможности

Ионные

Ковалентные

Интерметаллиды

(Δ«ЭО» – max)

( «ЭО» – min)

(d-металлы)

(S – металлы,

(р-металлы)

донорно-акцепторная

хим.св.-ионная

ковалентная

со структурой

кристал.

атомная

внедрения

Реш.– ионная)

пользоваться полимерными материалами» Ярким свидетельством важности полимеров является 100-кратный рост их производства в США за последствие 40 лет. В объемных показателях их производится больше, чем стали, выпуск которой за тот же период увеличился лишь вдвое. Совершенно ясно, какие экономические выводы следуют из этого сравнения.

Химия полимеров определяется многими параметрами. Контроль над ними – искусство, которым химики овладевают все в большей степени и большей степени. Чрезвычайно важны тщательный подбор условий реакции (температуры, давления, инициатора полимеризации, концентрации, растворителя, эмульгатора и т.д.) и структур реагентов (мономеров), которые могут существенно влиять на целый ряд различных свойств полимерных продуктов. Мы можем предопределить среднюю длину цепи (молекулярную массу), степень ее разветвленности, число поперечных связей между полимерными цепями и физические и химические свойства конечного продукта (путем ввода специально подобранных функциональных групп).

Целенаправленно манипулируя этими факторами, химик может конструировать полимеры с заданными свойствами, такими как пластичность или жесткость, прочность при растяжении, гибкость или эластичность, термопластичность или термическая устойчивость, химическая инертность или растворимость, притягивание или отталкивание растворителей (смачиваемость или несмачиваемость для воды, чувствительность к свету (фото-деструкция) и микроорганизмам (биодеградация) и способность изменять вязкость при течении (тиксотропия). Именно этим объясняется продолжающийся рост производства пластиков и увеличение их присутствия в предметах, которыми мы пользуемся , которые носим, на которых сидим, в которых ездим, которые, как или иначе, входят в наш обиход.

Полиэтилен: химическая цепочка из многих идентичных фрагментов

НОВЫЕ ОПТИЧЕСКИЕ МАТЕРИАЛЫ

Оптические волокна

Подобно тому, как в современной электронике транзисторы вытеснили электронные лампы, тончайшие кварцевые нити вытесняют медную проволоку, традиционно использовавшуюся для изготовления кабелей. Импульс электронов, посылаемый по медной проволоке, заменил световой импульс, посылаемый по светопроводящим волокнам. Решающую роль в практическом осуществлении этого нового подхода сыграло то обстоятельство, что технологи сумели разработать эффективный способ получения высокопрозрачных кварцевых нитей путем химической конденсации пара (ХКП). Суть его состоит в следующем: соединение, диоксида, кремния, который на внутренней поверхности стеклянной трубки. Трубку с нанесенным слоем диоксида кремния размягчают и вытягивают нить. Толщина получаемой таким образом кварцевой нити со стеклянным покрытием составляет примерно одну десятую толщины человеческого волоса. ХКП позволила менее чем за десятилетие в 100 раз сократить потери света в волокнах. Новый класс материалов, фторидные стекла, возможно позволит получить еще более прозрачные нити. В отличие от обычных стекол, представляющих собой смеси оксидов металлов, фторидные стекла – это смеси фторидов металлов. Многие практические проблемы, связанные с использованием таких стекол, еще не решены, но в принципе, используя фторидные стекла, можно было бы передавать оптические сигналы через Тихий океан без помощи релейных станций.

Оптические переключатели

Химия сыграла весомую роль не только в разработке новых материалов, таких как оптические волокна, и процессов их получения, но и в создании материалов для оптических устройств, предназначенных для переключения, усиления и хранения оптических сигналов. Эта область открывает замечательные возможности ведь оптический переключатель способен срабатывать за одну миллионную миллионной доли секунды (за пикосекунду). В современных оптических устройствах используются ниобат лития и арсенид галлия алюминия, продукты электронной индустрии. Однако органические стереоизомеры, жидкие кристаллы и полиацетилены могут давать оптические эффекты, превосходящие возможности ниобата лития. Эта область исследований обещает много новых открытий и технологических разработок.

НОВЫЕ ПРОВОДНИКИ ЭЛЕКТРИЧЕСТВА

Полупроводники

Пятидесятые годы ознаменовались блестящими достижениями в физике твердого тела, заложившими фундамент

глубокого понимания природы чистых полупроводниковых материалов. Поскольку в процессе проведения этих исследований выяснилось, что необходимы монокристаллы элементных кремния и германия с содержанием примесей не более одной части на 100 миллионов, химикам также пришлось заняться этими проблемами. В результате полупроводниковые свойства были обнаружены у бинарных соединений элементов III и V групп Периодической системы, например у соединения галлия и мышьяка. Одно из типичных соединений III-V-антимонид индия, смешанный полупроводник, который уже 15 лет используется как один из самых чувствительных детекторов в ближней инфракрасной области. Несколько позднее в центре внимания оказались монокристаллы арсенида галлия различной толщины с различным содержанием примесей. Материалы этого рода служат для изготовления лазеров и лазерных дисплейных устройств, используемых в длинноволновых оптических линиях связи.

По мере расширения круга материалов, применяемых в полупроводниковых технологиях, в эту работу вовлекалось все больше и больше химиков. Скачок активности химиков совпал с поразительным открытием полупроводниковых свойств аморфного (некристаллического) кремния. Поскольку общепринятая и весьма эффективная теория полупроводникового поведения, вошедшая во все учебники, ориентирована на свойства абсолютно упорядоченных твердых тел, в рамках этой теории нельзя было ни предсказать существование аморфных полупроводников, ни удовлетворительно описать их.

Для объяснения этой загадки пользуются химическим языком и хищническими концепциями (например, говорят о «блуждающих связях» в аморфном кремнии).

Мы находимся на пороге новой эры в науке о твердом теле: физики продолжают развивать успехи, достигнутые ими в изучении свойств новых твердотелых материалов, роль же химиков существенно возрастает. Дело в том, что в настоящее время открыты совершенно новые группы твердых тел, обладающих электрической проводимостью, свойства которых в значительной степени определяются способностью химиков контролировать локальные структуры и молекулярные свойства. Как мы увидим далее, некоторые из этих материалов относятся к классу неорганических, другие – к классу органических соединений.

МАТЕРИАЛЫ ДЛЯ ЭКСТРЕМАЛЬНЫХ УСЛОВИЙ

Развитие многих современных технологий сдерживается изза отсутствия подходящих конструкционных материалов. Реактивные и автомобильные двигатели, ядерные реакторы, магнитогидродинамические генераторы и теплозащитные щиты космических кораблей – примеры из настоящего. В будущем проблема материалов возникнет в связи с реализацией управляемого термоядерного синтеза. Мощность и эффективность любого теплового двигателя – парового, внутреннего сгорания, реактивного – с повышением рабочей температуры возрастает. Поэтому работа над получением новых материалов, которые позволили бы повысить рабочие температуры, имеет большое экономическое значение.

Новые методы синтеза

Существует ряд перспективных методов приготовления термостойких материалов. Это имплантация ионов, пламенный синтез, плавление в отсутствие гравитации, напыление на кристаллические поверхности с помощью молекулярных пучков (эпитаксия) и химическая конденсация из пара под действием тлеющего разряда (плазма). Относительно недавно был предложен необычный метод, базирующийся на использовании лазерной техники. Луч мощного импульсного лазера, сфокусированный на твердой поверхности, способен кратковременно (менее чем за 100 нс) создавать исключительно высокие локальные температуры, вплоть до 10000 К. В месте фокусировки такого короткого высокотемпературного импульса, происходят значительные химические и физические изменения, например, модификация поверхности, образование поверхностных сплавов, а в условиях конденсации пара он может инициировать специфические химические реакции. Все упомянутые методы приводят к термодинамически нестабильным фазам с особыми «замороженными» свойствами. (Примером подобной фазы служит алмаз) Этот драгоценный камень ценится за «игру» света и исключительную твердость, но в нормальных условиях он термодинамически неустойчив относительно графита.

Часть II. Неорганическая химия

План всех представленных в части II лекций:

1. Нахождение в природе;

2. Структура;

3. Получение в промышленности;

4. Химические свойства;

5. Наиболее известные производные и их свойства;

6. Применение

Часть II

Неорганическая химия

Лекция 15

Химия элементов и их соединений. Инертные газы

Химия элементов и их соединений. Инертные газы

Самостоятельно: водород, кислород, озон, перекись водорода, вода.

Впервые инертные газы были получены в 1785 году Кавендишем. Но эти годы не были индефицированы. При проверке гипотезы Проута ( все элементы можно представить в виде сум-мы атомов водорода) выдающийся английский физик Рэлей установил различие атомных масс азота, полученного из воздуха

при разложения неорганических соединений (NH4NO2).

дальнейшим инертные газы (ИГ) впервые открыты с использованием современных спектроскопических методов Рэлеем и Ролуаем. Основные физические свойства приведены в следующей таблице:

Свойства

He

Ne

Ar

Kr

Xe

Rn

Электронное строение

2

2 6

2 6

2 6

2 6

2 6

1s

2s 2p

3s 3p

4s 4p

5s 5p

6s 6p

R атома

1,22

1,6

1,92

1,98

2,18

2,14

ρ, г/л

0,18

1,9

1,78

3,71

5,85

9,73

J, э/в

24,58

21,56

15,75

14

12,13

10,75

Содержание, в Н %

5·10-4

16·10-4

0.93

10-4

10-6

10-12

Получение:

Все инертные газы полиизотопны. И.Г. в настоящее время получены при сжижении воздуха с последующей отгонкой O2 и N2.

И.Г. располагаются в несжижающейся части воздуха. Не и Ne и некоторые другие газы пполучают с помощью вымораживания или с помощью хромотографических методов разделения.

Физические свойства И.Г.

И.Г. – одноатомны, являются газообразными веществами, бесцветны, не обладают запахом и вкусом. Из этих элементов –

Rn (радон) является радиоактивным элементом. Ограничено растворение их в жидкости. Например, в 100 объемах воды растворяется 1 объем He, 6 объемов Ar, 50 объемов Rn. И.Г. имеет низкие температуры кипения и плавления. tкип He = 2,19° K

He – является «Квантовой жидкостью». Он обладает свойствами сверхтекучести и сверхпроводимости.

Химические свойства

Впервые в 30–е годы Л.Поменгом была предсказана возможность образования химических соединений при взаимодействии И.Г. с сильными окислителями (F). Но эксперименты по обнаружению их не увенчались успехом. В тоже время известно, что некоторые И.Г. образуют некоторые соединения включения или клатрат. Клатраные соединения (кристаллической структуры), в полости могут находиться атомы И.Г. В этом случае не происходит образование химической связи ковалентного типа, а образуются межмолекулярные химические связи.

Xe ∙ 6H2O

В 1967 г. Дж. Бартлетт впервые показал, что при взаимодействии сильного PtF6 происходит образование кристаллического вещества по следующей схеме:

Xe+PtF6 = Xe[PtF6] – компл. соединение (крист.оранж.цвета)

При повышении температуры и давления удалось получить:

XeF2, XeF4, XeF6, XeF8

Затем удалось получить производные Kr; KrF2; KrF4; производные Rn и, как считается в литературе, производная Ar. В настоящее время не известны соединения Ne, He. Oказалось, что эти соединения могут взаимодействовать с различными хими-ческими веществами:

XeF2 + H2 = Xe + 2HF

NeF2 + KJ = Xe + KF + J2

NeF6 + SiO2 = NeOF2 + SiF4

Все производные И.Г. c F – сильные окислители. При взаимодействии их с водой происходит образование оксидов:

XeF6 + H2O → XeO3 + HF

Оксид Xe: XeO3 – является ангидридом Xe-ой кислоты (H6XeO6), кислоты неустойчивой, но известны ее соли:

Na6XeO6, Ba3XeO6

XeO3 представляет собой сильный окислитель (кристаллическое вещество, устойчивое при нормальных условиях), обладает сильными взрывчатыми свойствами, рассматривается как перспективный окислитель ракетных топлив. В настоящее время

известно свыше 300 химических производных И.Г. (за исключением He и Ne).

Примечание:

широкое применение в ядерной энергетики, при создании аппаратов искусственного дыхания, используется при создании новых конструкционных материалов

в газосветных лампах (оранжевый цвет).

в металлургии, при получении урана, тория, циркония и др. элементов, используемых при сварке металлов, в лампах накаливания (голубой цвет)

в медицине (наркотик)

ЛЕКЦИЯ №16.

VIII – B – элементы (d-элементы). Группа железа.

Свойства

Fe

Rn

Os

Электронное строение

6 2

7 1

6 2

3d 4s

4d 5s

5d 6s

R, нм

0,126

0,134

0,135

J, эв

7,89

7,36

8,5

P, г/см3

7,8

12,4

Содержание, %

2

10-7

5·10-7

Важнейшие степени окисления:

Fe – +2, +3 (встречаются – +2,0, +4, +6)

К.ч. – 4,6

В природе Fe встречается в виде различных минералов: Fe3O4 – (магнетит) магнетич. железняк,

Fe2O3 – красный железняк,

FeCO3 – шпатовый железняк и бурые железняки FeS2 – железный колчедан

Rn (рутений) и Os (осмий) являются рассеянными элементами, соответствующими группе платиновых элементов.

Rn и Os – серебристо-белого цвета Ме, может быть (Os – го-лубовато-белый) в зависимости от строения кристаллической решетки.

Для Fe известно 4 кристаллических модификации: 1) α – Fe (до Т = 760°)

Структура – пространственно-объемно-центрированная кубическая решетка. Обладает ферро-магнитными свойствами.

2) Β – Fe (от 770 – 911°С)

Кристаллическая объемно-центрированная решетка. Рассто

яние между атомами больше. 3) γ – Fe (до Т= 1394° С)

Гранецентрированная кубическая решетка. Свойства паромагнитные.

4) δ – Fe (Т выше 1394°С до Т плавления). Происходит образование объемно-центрированной кубической решетки.

По химическим свойствам Fe – металл средней активности. Взаимодействует практически со всеми металлами и неметаллами. Например, C, N, Si, P, S, As. В этом случае образуются соединения переменного состава. Fe активно взаимодействует с разбавленными минеральными кислотами (без доступа кислорода с образованием Fe со степенью окисления +2)

Fe+3 + 1e = Fe +2

Fe не взаимодействует с концентрированными H2SO4 и HNO3 (При нагревании взаимодействует с умеренно конц. H2SO4 и H2NO3 с образованием соответствующих солей Fe (III) и выде-лением SO 2 и NO.При нормальных условиях Fe не растворяется в щелочах, Rn и Os – малоактивны.

Fe + 5CO2 = Fe(CO)5 пентакарбонил Fe

ЛЕКЦИЯ 17 Соединения железа

Fe (0)

При высоком давлении (Р = 10 Па7) и высокой температуре (200° С) железо активно взаимодействует с оксидом углерода по

схеме:

Fe(CO)5

Представляет собой достаточно подвижную жидкость (температура кипения +103° С)

Таким образом в промышленности можно получать железо высокой степени чистоты. Аналогичным методом можно получить пентакарбонилы, которые также используются для получе-ния чистых элементов.

Fe (II)

Полученное при обработке железо разбавляют кислотами в отсутствии кислорода воздуха или при взаимодействии железа

активными химическими соединениями (F2,Cl2). В водных растворах образуются аквакомплексы катионого плана.

[Fe(H2O)]+2

Поэтому цвет солей Fe(II) (светло-зеленый) определяется

цветом комплексного иона. Fe(II) образует комплексные соединения практически со всеми ионами. Причем при выпаривании из водных растворов образуют кристаллогидраты различного состава.

Например: FeSO4 ∙ 7H2O ; Fe(NO3)2 ∙ 6H2O; Fe(ClO4)2 ∙ 6H2O (все зеленого цвета). Fe(II) обладает восстановительными свойствами. Это свойство используется в аналитической практике.

FeSO4+KMnO4+H2SO4 – K2SO4+Mn2SO4+H2O+Fe2(SO4)3

Fe(II) способно к образованию как анионных, так и катионных комплексных соединений.

Fe(OH )2 + KOH → K4[Fe(OH )4]2

Конц.      Тетрагидрокоферрат калия

Анионные комплексы малоустойчивы.

К наиболее устойчивым и широко используемым в лабораторной практике относятся следующие комплексные соединения:

FeSO4 + 6KCN → K4[Fe(CN)6] + K2SO4

FeSO4 + 2KCN → Fe(CN)2 + K2SO4

FE(CN)2 + 4KCN = K4[Fe(CN)6]

K4[Fe(CN)6] ∙ 3H2O – желтая кровяная соль

Данное комплексное соединение используется в аналитической практике для качественного определения иона Fe(III).

Качественная реакция:

FeCl3 + K4(Fe(CN)6 = K+3Fe(Fe+2(CN– 4)6 + 3KCl

берлинская лазурь

Соединения Fe+2 легко окисляются на воздухе с образованием Fe+3

Fe(OH)2 + O2 + H2O → Fe(OH)3

Fe(III)

В водных растворах Fe(III) существует в виде аквакомплекса К.ч. = 6

[Fe(H2O) 6] 3+ (сине-фиолетовый цвет в момент образования) Из водных растворов легко выделяются гидраты:

FeCl3 ∙ 6H2O ∙ Fe2 (SO4) 3 6H2O

Fe(NO3) 3 ∙ 6H2O и т.д.

Fe(III) в водных растворах обладают окислительными свойствами. Кроме того, соединения Fe(III) в водных растворах активно гидролизуется. Fe(III) способно участвовать в образовании как катионных, так и анионных комплексных соединений,

причем анионных комплексы стабильнее, чем аналогичные комплексы для Fe(II).

Fe(OH)3 + 3NaOH = Na3[Fe(OH)6]

Важным комплексным соединением Fe(III) является K3[Fe(CN)6] – красная кровяная соль.

Данное соединение тоже используется в органической химии для качественного определения Fe(II).

FeCl2 + K3[Fe(CN)6] – KFe[Fe(CN)6] + 2KCl – турнбуллева синь качественная реакция на ионы Fe(II). Последние исследования показали, что по своему строению берлинской лазурь и ту

рибуллева соль идентичны.

ЛЕКЦИЯ 19. Подгруппа кобальта (Со)

Co

Ph

Jr

27

45

77

R, нм

3d74s2

4d85s1

5d76s2

0,125

0,134

0,135

γ, эв

7,87

7,46

9,1

ρ, г/см3

8,8

12,4

22,4

Тпл., °С

1492

1963

2450

1,5 10-3

1,7 10-7

8,5 10-9

Со встречается в природе как сопутствующий элемент в поли-металлических рудах. Наиболее распространен CoAsS (кобальтин). Характерная степень окисления – +2, +3. В комплексных соединениях К.ч. = 6,4.

Способ получения чрезвычайно трудоемкий, 1 этап концентрирован гидро– и пиро– металлургическими способами с последующим образованием оксидов, обработка оксидов минераль-ными кислотами.

(H2SO4) c последующим электролизом. Все эти элементы – металлы серебристо-белого цвета. Со имеет 2 аллотропн. модификации. До t° = 417° С – α – Ρо имеющ. .гексагонольную ориентацию кристаллическую решетку. При t>417° С – β – Ρо, имеющие гранецентрированную кубическую решетку.

Взаимодействие с О2 при t>300° С. при нагревании взаимодействует с С, В, N, галогенами и т.д. образованные соединения переменного состава Со не взаимодействуют со щелочами. С кислотами взаимодействуют значительно менее активны и сложнее Со.

Комплексные соединения Со

СО(0)

При взаимодействии Со с оксидом С при высокой температуре и давлении образуется С(СО)8.

Данное соединение при нагревании расплавляется с образованием химически чистого Со.

СО(II)

В водных растворах Со(II) существует в виде аквакомплекса, причем соединения (соли) его малиново-розового цвета. Со(II) в растворах определяется цветом аквакомплекса. При выпаривании водных растворов образуется:

CoCl2 ∙ 6H2O; Co(NO3)2 ∙ 6H2O

Со(II) образуют как анионные, так и катионные комплексы соединения. Анионные комплексные соединения малоустойчивы и распадаются в воде. Координационное число 6 или 4. Качественные реакции используются в аналитической химии и сводятся к следующей схеме:

CoCl2 + NH4NCS =

Роданид аммония

CoCl2 + 2NH4NCS = Co(NCS)2 + 2NH4Cl

Co(NCS)2 + NH4NCS = (NH4)2(Co(NCS)4

При обработке раствора органическими растворителями появляется синее окрашивание. При разбавлении происходит постепенное проявление розового окрашивания.

Качественная реакция на Со(П).

Co(NCS)4+2 + H2O – [Co(H2O)6]2+ + NCS-

Со(III)

Водные растворы солей Со(III) неустойчивы, обладают сильными окислительными свойствами. Для Со(III) получено большое количество различных катионных комплексов.

Применение Со.

Используется при получении сплавов цветных, эмалей (голубой) сегментов, красителей, используется в качестве микроэлемента в удобрениях.

ЛЕКЦИЯ 21 Подгруппа никеля (Ni)

Ni – полиизотопный элемент. Различаются 2 кристаллические модификации:

α Ni до t=250° C; βNi t>250° C

Относится к числу рассеянных элементов. Однако, в природе встречаются минералы:

важнейший – никелин.

В промышленности получен аналогично Со.

Степени окисления : +2, +3. Основная степень окисления +2. Ni – является малоактивным соединением, не взаимодействует со щелочами, с О2. Взаимодействует при t> 5000, при нагревании взаимодействует с галогенами, С, В, N и другими элементами с образованием соединений переменного состава. Менее активен по

сравнению с Со при взаимодействии с минеральными солями.

Основные соединения:

Ni(O):

Ni + 4CO = Ni(CO)4

Ni (II) жидкость, разлагающаяся при температуре 200° С с образованием химически чистого Ni при взаимолействии Ni с минеральными солями или другими химическими соединениями образуются соединения Ni со степенью окисления (+2)

Водные растворы представляют собой аквакомплекс (зеленого цвета) [Ni(H2O)6]+2. Ni (II) способен образовывать комплек-сные соединения анионного типа с координационным числом

«4»: [Ni(CN)4] –2

Количество комплексных соединений для Ni (II) достаточно велико. При взаимодействии c диметилглиоксимом – качественная реакция (р-ия Чугаева) (яркое малиново-окрашенное вещество)

При действии сильных окислов на соединение Ni(II) образуются соединения Ni(III). Соединения Ni(III) достаточно разнообразны, (однако, они неустойчивы), являются сильными окислителями Ni(OH)3

Применение:

Широко используют при создании жаро– и коррозийно-про-чных сплавов.

ЛЕКЦИЯ 22 Галогены

Элементы УП-А группы:

F, Cl, Br, J, At

(галогены)

Физические свойства:

…ns2p5

F

Cl

Br

J

At

R, нм

0,071

0,099

0,114

0,133

Е, эв

3,6

3,8

3,54

3,29

У. эв

17,42

12,97

11,81

10,45

9,2

%

2,8 10-2

2,6 10-2

8 10-5

4 10-4

Чрезвычайно активные элементы.

Фтор.

Фтор в природе встречается в виде одного изотопа (9), однако искусственно получены его радиоактивные изотопы. Во всех своих основных соединениях фтор всегда проявляет степень окисления: «-1».

Впервые фтор был получен в 1886 году А.Муассаном. Фтор представляет собой газообразное вещество желто-зеленого цвета, с температурой кипения = -187°. Вещество чрезвычайно ядовито, химически активно. В природе фтор встречается только в твердом состоянии. Важнейшие минералы фтора: CaF2,

3Ca3 (Po4)2 CaF2, криолин – Na3 AlF6 .

Получают фтор в промышленности при электролизе дифторида К.

Температура электролиза ≤ 2500.

Химические свойства:

Фтор – самый активный химический элемент

EF-F = 151 кдж/моль. Eэ-F = 400-800 кдж/моль. Eа = 4 кДж/моль. Ea ≤ 4 кдж/моль

Таким образом, малое значение Еа при взаимодействии фтора с элементами и химическими соединениями, невысокое значение Есвязи между атомами F и образование прочных химических связей с различными химическими элементами, малый размер атомов фтора и определяет высокую химическую активность фтора.

Фтор не взаимодействует с: O2, He, Ne, Ar.

C остальными элементами и соединениями взаимодействует без исключения, например:

SiO2 + 2F2 = SiF4 + O2↑

2H2 O + 2F 2 → 4HF + O2↑ S + 3F2 → SF6

Фтор взаимодействует с галогенами: C2, Br2, J2 с образовани-ем различных галогенопроизводных фтора:

FCl, FCl3, FCl5, FCl7

При взаимодействии с NH3 процесс идет по следующей схеме:

H3 + F2 → HF + NF3

Фтор является чрезвычайно сильным окислителем, взаимодействует с инертными газами (см. инертные газы)

Xe + F2 → XeF4

F взаимодействует с Н2 со взрывом

F2 + H2 → 2HF + Q

CaF2 + H2SO4 – CaSO4↓ + 2HF

Соединения фтора (фтороводород):

HF – чрезвычайно активное химическое соединение. Темпе-ратура кипения -19,5° С.

O2 + HF → SiF4 + H2O

F4 + 2HF → H2[SiF6]

HF смешивается с H2O происходит образование плавиковой кислоты. HF (плавиковая кислота) является чрезвычайно ядо-витым соединением.

Молекула HF находится в газообразном состоянии или в рас-творе. В водном растворе происходит диссоциация по следую-щей схеме:

H2O + HF → H3O+ + F-

K = 7,2 10– 4 HF слабая кислота

HF + F-/ → HF 2-

K =5,1

Таким образом, в растворе плавиковой кислоты достаточной концентрации происходит образование ионов HF 2-. Поэтому при нейтрализации плавиковой кислоты щелочами и происхо-дит образование дифторидов ионов

KF HF (KHF2)

Соли плавиковой кислоты (фториды) обычно трудно растворимы в водных растворах, за исключением солей, образованных элементами: N, K, Po, Cs, NH4, Sn, Gg и др.

Оксид F.

OF2 представляет собой газообразное вещество, являющееся сильным окислителем и образованным в результате взаимодействия следующих соединений:

NaOH + F2 → NaF + H2O + OF2↑

Применение F:

F2 широко используется при получении различных фторорганических соединений, среди которых имеется хладоагенты

Используется для получения

[-CF2 – CF2-]n – тэфлон (инертное вещество)

F2 и его соединения , такие как OF2, FCl3, BrF5, используются как окислители в ракетной технике. AlF3 используется как катализатор.

Криолит широко применим при получении Al.

Cl, Br, J, At

Наиболее устойчивые степени окисления для изучения элементов имеют: Cl: -1, +1, +3, +5, +7; B: -1, +5, +7

ЛЕКЦИЯ 23 Кислородные соединения галогенов

а) кислоты

НCIO – хлорноватистая к-та (гипохлориты – соли)

HClO3 – хлорноватая к-та (хлораты) HClO4 – хлорная (перхлораты)

Наиболее слабой кислотой является хлорноватистая кислота HClO2 – хлористая к-та (хлориты)

Хлорная кислота (HClO4) является самой сильной из всех известных кислот.

Окислительная способность изменяется в обратном направлении. Поэтому HСlO является сильным окислителем и широко используется в легкой и текстильной промышленности при отбеливании различных материалов

HClO– → HCl + "O", "2"O" = O2

HClO → Cl2+1O + H2O

HClO → HCl-1 +HClO3

Устойчивость кислот уменьшается снизу вверх.

HBrO3 → Br2 + H2O + O2|

HJ+5O3

Устойчивость кислородосодержащих соединений со степенью окисления +5 возрастает от Cl к J. Однако, окислительная способность и относительная сила кислот изменяется в обратном направлении. В практике находит большое значение кислородосодержащие кислоты галогенов со степенью окисления +5, который используется в качестве исходных продуктов для получения окислителей и химически активных соединений.

Способы получения:

Ba(ClO3) 2 + H2SO4 → BaSO4↓ + 2HClO3

Ba(OH )2 + Cl2 → Ba(OCl2) + Ba(Cl3)2

Br02 + Cl02 +H2O → HBr+5O3 + HCl-1

J2 – HNO3 → HJOконц3. + NO↑ + H2O

Важное значение в практике приобрела хлорная кислота, которую получают двумя способами:

1) действие минеральных кислот на соответствующие соли хлорной кислоты (перхлораты)

2) путем электролиза хлоратов

а) Cl2+1O

KСlO4 + H2SO4 → NСlO4 – KHSO4

конц.

HClO4 отгоняется с помощью водяного пара

[KCl+5O3 → KCL+7O4 + KCl-1]

Хлорная кислота является самой сильной из всех известных кислот. Насыщенные растворы являются сильнейшими окислителями. (Водные ее растворы – слабые окислители).

В присутствии HClO4 все остальные известные кислоты ведут себя как основания.

ЛЕКЦИЯ 24 Оксидогалогены

HCl <==> Cl2O↓ + H2O

Оксид Cl представляет собой темный газ, обладающий парамагнитными свойствами, являющийся сильным окислителем, а

также для получения гипохлоритов.

б) Cl+2O2

Темно-бурый газ, сильный окислитель, полученный при разложении хлорноватой кислоты (см. выше). При взаимодействии с водой:

ClO2 + H2O → HClO3 + HCl

ClO2 + KOH → KСlO3 + KСlO2

в) Cl2+4O4

Представляет собой светло-желтую жидкость, (открыта в

1970 г.), окислитель, неустойчивое соединение

г) Cl+6O3

Cl2O6 представляет собой красно-бурую жидкость, распадается по следующему уравнению:

Cl+62O6 + 2KOH → KCl+5O3 + KCl+7O4 + H2O

Обладает сильными окислительными свойствами.

д) Cl2+7O7

Маслянистая жидкость, полученная при действии фосфорного ангидрида на хлорную кислоту

6HClO4 + P2O5 → 3Cl2O7 + 2H3PO4

Представляет собой неустойчивое химическое соединение. Среди других, устойчивых оксидов галогенов известны J2O5 –

кристаллическое вещество, полученное в результате термического разложения

HJO3 → J2O5 – H2O

Применение галогенов (самостоятельно).

ЛЕКЦИЯ 25 Галогены

Расположение в периодической системе Д.И. Менделеева

Электронное строение.

Фтор 9F 1s22s22p5

Хлор      17Cl 1s22s22p63s23p5

Бром 35Br 1s22s22p63s23p5

Иод      53J 1s22s22p63p64s23d104p65s24d105p5

-I, +I, +3, -5, +7 -I, +I, +3, -5, +7 -I, +I, +3, -5, +7

Нахождение в природе и получение

Фтор: CaF2, Na3 (AlF6)

Хлор: NaCl, NaCl·KCl, KCl·MgCl2·6H2O

Бром: AgBr, в морской воде Иод: Ca(JO3) 2, в морской воде

F2: электролиз расплавов

A(+) 2F– – 2e → F2

Cl2: электролиз растворов, расплавов

Br2: 2Br-+Cl2=Br2+2Cl-

J2: 2J-+Cl2=J2+2Cl-

Основные физические свойства

Температура кипения,

°С

Фтор: газ

– 187

Хлор: газ

– 34

Бром: жидкость

58

Иод: крист.      184,5

Химические свойства и важнейшие соединения

Молекулы Г2 – окислители

В ряду F Cl Br J окислительная способность Г2 убывает, а восстановительная способность ионов F– увеличивается.

Свойства водородных соединений галогенов в растворе

α в 0,1 м р-ре, %

HF

9,0

слабая к-та

HCl

92,6

HBr

93,5

сильные к-ты

HJ

95,0

Для HF:

…F-H…F-H…F-H…

ЕсвязиН…F=34 кдж/моль

ионы – Г – – восстановители Пример: убывание окислительной активности Г2

F2+H2=2HГ; G0 = – 270 кдж/моль

(в темноте, на холоде, со взрывом)

Cl2+H2=2HCl; G0 = – 95,2 кдж/моль

(с горением)

Br2+H2=2HBr; G0 =-53,5 кдж/моль

(при нагревании)

J2+H2=2HJ; G0 = +1,3 кдж/моль

(при сильном нагревании)

Пример: увеличение восстановительной активности ионов Г-

2KBr– + 2H+62SO4 = Br02 + SO+42 + K2SO4 + 2H2O 8KJ– + 5H2SO+64 =4J0 2 + H2S-2 + 4K2SO4 – 4H2O S+6 + 2e– → S+4

S+6 + 8e– → S-2

ЛЕКЦИЯ 26 Элементы VII – В

Общая характеристика

К этой группе относятся d-элементы (Мп, Т, Re)

Основные степени окисления Мп +2, +4, +6, +7 встречаются

(+3, +5, 0)

Для Тс и Re +7 Координационное число

Мп (4, 6), Тс, Re (2, 4, 6, 7, 9)

Мп

Тс

Re

4123d5

5124d5

6125d5

Ч, нм

0.130

0.136

0.137

J, эв

7.44

7.28

7.88

Содержание, %

310-2

8 10-9

Т пл., °С

1245

2200

3190

Для Мп известно в природе несколько минералов.

МпО2 (пиролюзит) Мп3О4 (гаусманит) Мп2О3 (браунит)

Re –рассеянный элемент, встречается в рудах, сопутствующий Мо

Получение Мп при электролизе МпSO4 или проводят восстановление Мп из его оксидов углеродом, алюминием или кремнием.

МпО2 + Si – Мп + SiO2

Обычно процесс восстановления Мп из его руд происходит совместно с оксидом Fe. В этом случае происходит образование смеси Fe с Мп, которое получает название ферромарганец (Ф).

Ф является важнейшим продуктом в металлургической промышленности и используется как для получения Мп, так и для получения легируемых сплавов.

Свойства.

По своему химическому поведению Мп является более активным по сравнению с Тс и Re.

В ряду активности Мп находится до Н, а Тс и Re после Н. Мп на воздухе покрывается плотной оксидной пленкой, препятс

твующему окислению, однако в мелко раздробленном состоянии, особенно при повышении температуры, Мп легко окис-ляется. До t = 100° С – не взаимодействует с водой, а при более высоких t – активно взаимодействует. При нагревании легко взаимодействует с галогенами, серой, азотом и др. элементами

образованием соединений переменного состава. Активно взаимодействует с разбавленными минеральными кислотами (НСl, Н2SO4) с выделением Н2. С разбавленной НNO3 взаимодействует

образованием NO и соответствующей соли. С умеренно концентрированной Н2SO4 взаимодействует с образованием соли и SO2. Концентрированная Н2SO4 и HNO3 пассивируют Мп. Не взаимодействует со щелочами.

Для Мп характерны следующие устойчивые оксиды:

МпО, Мп2О3

МпО2

Мп2

О7

Основные

амфотерный

кислотный

Важнейшие соединения Мп: KМnO4

MnO2.

ЛЕКЦИЯ 27

Элементы VI-В группы.

О, S (самостоятельно)

Сr, Мо, W

Основные степени окисления:

Cr +3, +6 (0, +1, +2, +5)

Мо +6

+6

Координационные числа:

Сr 6,4 Мо, W 6

В природе встречаются эти элементы в связанном состоянии, образуются минералы:

Fe(CrО2)2 – хромистый железняк, FeOCr2O3, PbCrO4 – крокоит;

МоS2 – молибденит;

СаWO4 – Шеелит;

Все эти элементы (-элементы) являются серебристо-белыми металлами.

Все эти элементы – полиизотопы Физические свойства:

Cr

Mo

W

…4S135

…5S145

…6S254

Ч, нм

0.127

0.137

0.140

J, эв

6.77

7.10

7.98

г\см3

7.2

10.2

19.3

Т.пл °С

3390

4800

5900

Сод. в природе

8 10-3

6 10-5

10-5

Получение:

В промышленности получают Cr, Мо и W используя различные восстановители (С). В результате восстановление хромистого железняка углеродом образуется феррохром, содержащий в своем составе более 60 % Cr. Феррохром используется как для получения чистого Cr, так и для создания различных лигированных сплавов. Для получения чистого Cr используется другой метод, в результате выделяется оксид Cr (III) Cr2O3, который вос-станавливается аллюминеем или кремнием.

Cr2O3 + Al →Al2O3 + Cr

PbCrO4 + Na2Co3→Na2Cr + …

Na2CrO4 + H2SO4→ Cr2O3 + H2O

Cr2O3 + C →Cr2

PbCrO4→ Na2CrO4 →Cr2O3 →Cr

Хром высокой степени чистоты получают методом зонной плавки или используют гекса-карбонит Cr – Cr (Co)6.

Химические свойства:

По химическому поведению последовательно уменьшается активность от Cr к W

Cr энергично взаимодействует с разбавленными минеральными кислотами (Н2SO4,HCI, HNO3)

Cr + HCl CrCl3 + H2↑

Cr + HCl CrCl2 + H2↑

Образующийся при взаимодействии с НСl Cr (II) окисляется до Cr

(III).

Мо и W не взаимодействуют с разбавленными кислотами. Мо взаимодействует с Н2SO4, при сильном нагревании W расстворяется в смеси горячих плавиковой и азотной кислот.

Концентрированные Н2SO4 и HNO3 пассивируют с Cr. При нагревании, особенно в мелкоразведенном состоянии Cr взаимодействует с образованием оксида Cr (III), а Мо и W с образованием оксидов высшей степени окисления: МоО3, W О 3. При высокой температуре Cr взаимодействует с галогенами, углеродом, азотом, серой, кремнием и т.д. с образованием нестехиометрических соединений. При комнатной температуре хром стоек к действию воды и О2 воздуха.

ЛЕКЦИЯ 28.

Оксиды

Cr+2O(?, Cr2+3O3, Cr+6O3

Важнейшие соединения хрома

Cr(0): Cr(CO)6 – используется для получения химически чистого Cr.

Комплексные соединения (по донорно-акцепторному меха-низму)

Cr(II): CrO, Cr(OH), CrHaC2 (F,Cl,Br,J)

Получают эти соединения при взаимодействии Cr с различными элементами, в водных растворах образуются соответствующие аквакомплексы [Cr(H2O) 6]2+ голубого цвета, определяют окраску солей Сr (II) в водных растворах. Соединения Сr (II) об-ладают только основными свойствами.

Cr (OH )2 + 2HCl + 4H2O = [Cr(H2O) 6]Cl2

Cr (OH )2 + 2H3O + + 2H2O → [Cr(H2O) 6]2+

Соединения Cr(II) являются сильными восстановителями. В присутствии O2 воздуха процесс идет:

Cr (H2O) 6 + O2 +H+ → [Cr(H2O) 6]3+

Соединения Cr(II) являются настолько сильными восстановителями, что при отсутствии окислителей идет процесс восста-новления H2O с выделением водорода

Cr2+Cl + H2O → Cr(OH )Cl2 + H2↑

Cr (III )

Для Cr(III) известно очень большое количество химических соединений, в особенности комплексных соединений, катионного, анионного и нейтральных типов. Оксид Cr(III): Cr2 O3 – темно-зеленый порошок, температура плавления 2265° С. Под названием «зеленый крон» используется для изготовления красок. Cr2O3 не взаимодействует при обычной температуре с водой, кислотами и основаниями.

K2S2O7 →K2SO4 + SO3

Cr2O3 +SO3→ Cr2 ( SO4) 3 (основное свойство)

В расплаве щелочи проявляются кислотные свойства оксида

Cr(III)

Cr2O3 + SO2 → CrO2 + H2O Cr2O3 обладает амфотерными свойствами

Cr(OH)3 – соединение переменного состава, (Cr2O3 ∙ nH2O) обладают амфотерными свойствами

При взаимодействии с кислотами образуются в водном растворе аквакомплекс синефиолетового цвета

[Cr(H2O)6]3+

При выпаривании водных растворов образуется устойчивый кристаллогидрат.

КCr(SO4)2 – хромокалиевые квасцы (используются в кожевен-но-обувной промышленности)

Cr(OH)3 + NaOH – Na3[Cr(OH)7]-3

на примере комплексных соединений Сr можно проследить явление изомерии

1) [Cr(OH ) 6]Cl3      CrCl3∙6H2O

сине-фиолетовый цвет

2) [Cr(H2O) 5Cl]      Cr2∙H2O

сине-зеленый цвет

3) [Cr(H2O)4Cl2]      Cl2∙H2O

темно-зеленый цвет

Данное явление получило название – ионизационная изомерия. В водных растворах соединения Cr(III) – легко гидролизуется.

[Cr(OH)6]3+

Cr(III) способен при взаимодействии с аммиаком образовывать комплексные соединения – аммиакаты, неустойчивость в водных растворах.

CrO3 представляет собой кристаллическое красное вещество, является очень сильным окислителем, взаимодействует с органическими веществами со взрывом.

При взаимодействии CrO3 + H2O → H2CrO4

Н2CrO4 известна только в растворах (нестабильна). Устойчивыми являются ее соли, которые называются хроматами. Цвет их в водном растворе – желтый. Окрашиваются ионы CrO4 – в желтый цвет. Хроматы получаются при действии сильных окислителей на соединениях Cr3+.

В зависимости от кислотности среды в водных растворах возможны равновесия между различными ионами

2CrO4 + H2SO4 → CrO3 + K2SO4 + H2O

водном растворе при рН>6 имеются только хромат-ионы в растворе желтого цвета. При подкислении происходит установление другого равновесия

2 CrO42– + 2H+ → 2HCrO4 → Cr2O7 + H2O

K2Cr3O13

тетрахромат

K2Cr3O10

трихромат

Cr2 O7 является производным неустойчивой двухромовой кислоты, Н2CrO7 для которых известны стабильные устойчивые соли, называются двухроматами. Наибольшее практическое значение имеют дихроматы щелочных металлов, которые используются в качестве сильных окислителей. Кристаллические Nа и К соли, носят название хромпески. Но в действительности в водных растворах возможно образование трихроматов, тетрахрома

тов, полихроматов.

K2Cr2O7

дихромат

Соединения хрома +6 являются сильными окислителями и используются с этой целью в химии и химической технологии. В процессе окисления образуются соединения хрома с устойчивыми степенями окисления +3.

Следует отметить, что наиболее сильными окислительными способностями обладают соединения Cr +6 в кислой среде.

Применение:

Сталь.

Химически устойчивые соединения (сплавы).

Получение феррохрома.

Молибден, Вольфрам, Мо, W.

ЛЕКЦИЯ 29.

Элементы VI-А группы

О, S, Se, Te, Po

Наличие соответствующих p-орбиталей

Для O характерным является степень окисления: -2, -1, +2. Для остальных элементов характерны следующие степени

окисления: -2, +4, +6, (+2)

Физические свойства

O, S, Se, Te, носят название халькогенов, что означает «образующие руды»

O

S

Se

Te

Po

r, нм

0,66

1,04

1,16

1,7

1.64

J, эв

13,61

10,36

9,75

9,01

8.43

р, г/см2

1,13

2,07

4,82

6,25

9,5

T ,С

–218,8

112,8

220,5

450

250

Относ.элек.

3,5

2.5

2,4

2.1

Таким образом, вниз постепенно уменьшается окислительная способность их, следовательно, возрастает их восстановительная способность.

Селен, Теллур, Полоний

Общее содержание

6 ∙ 10-5      6 ∙ 10-6

Se, Te относится к числу расс.элементов. В природе встречается как сопутствующий в сульфидных рудах Se, Te является полиизотопным элементом. Для Se известно 3 модификации, одна из которых является кристаллической. Для Те – 2 модификации. Эти модификации определяют пространственным строением атомов.

Se, Те не взаимодействуют с разбавленными НСl и H2SO4, од-нако взаимодействуют с НNO3

S + HNO3 →H2SO4 + NO2↑ + H2O

Se + HNO3 → H2SeO3 + NO2↑ + H2O

Н2ТеО3 – теллуристая кислота

В этих соединениях известны гидриды: Н2Э, которые получают или непосредственно взаимодействующих элементов или действием минеральными кислотами на соответствующие производные металлов.

Все гидриды этих элементов (кроме Н2О) представляют собой газообразные вещества с резким неприятным запахом, устойчивость уменьшается от О к Ро. При растворении в Н2О образуются слабые кислоты, причем сила кислот возрастает сверху вниз. Все эти кислоты образуют кислые или средние соли.

Na2Se + H2O ↔ NaHSe + NaOH

Se и Te образуют 2 вида оксидов элементов: SeO2, TeO2 (кристаллические вещества); SeO3, TeO3

Оксиды Se(+4,+6) растворяются в воде с образованием соответствующих кислот. Оксиды Te плохо растворимы в воде, поэтому соответствующие кислоты получаются косвенным путем. H2SeO3 – селенистая кислота, H2TeO3 – теллуристая кислота. Эти кислоты растворимы в воде.

При взаимодействии со щелочами образуются как кислые, так и средние соли. Устойчивость кислот возрастает сверху вниз, но сила их возрастает в обратном порядке, т.е. селенистая кислота – более сильная.

Эти кислоты обладают окислительно-восстановительными свойствами.

H2SeO4 – селеновая кислота, H2TeO4 – теллуровая кислота.

Получается при действии на H 2SeO3 и H2TeO 3 сильных окислителей (например, при действии HNO3 в смеси с хромовой кислотой H2CrO4) или при действии хлорной кислоты – HСlO4.

Селеновая кислота является более сильной кислотой, по сравнению с H2SO4, а теллуровая кислота – слабая.

H2TeO4 2H2O (H6TeO6) – ортотеллуровая кислота

H2SeO4 и H2TeO4 – известны как средние, так и кислые соли.

Применение

Se применятся при изготовлении полупроводников, в качестве фотоэлементов, выпрямитель переменного тока, в телевидении, при изготовлении оптических стекол, керамики, в сталели-тейной промышленности в качестве добавок, в электрографии, в ксерографии.

Te применяется при создании солнечных батарей, в лазерной технике, для легирования свинца.

ЛЕКЦИЯ 30

Элементы V-А группы

Общая электронная конфигурация: ns2p 3 Характерная степень окисления: -3, +3, +5

N

P

As

Sb

Bi

P,А

0,71

1,3

1,48

1,61

1,82

J,эв

14,53

10,48

9,81

8,64

7,29

p,г/см2

1,026

1,83

5,7

6,6

9,8

T плавл.

–20,29

44,1

814

630

271

N, P – типичные неметаллы. As, Sb – амфотерные свойства.

Bi – преобладающие металлические свойства. Восстановительные свойства возрастают сверху вниз.

Все элементы образуют гидриды (Э-3Н3), за исключением N, его гидриды образуются косвенным путем. Устойчивость гидридов уменьшается сверху вниз.

Кроме гидридов эти элементы образуют 2 типа устойчивых оксидов: (Э2+5О5) и (Э2+3О3). Э2О5 – кислотные оксиды, при взаи

модействии с водой образуют два типа гидроксидов, обладающих кислотными свойствами НЭ+5О3, Н3 Э+5О4 . В этом случае образуется два типа гидроксидов: НЭ+3О2, НЭ+5О3. Причем кислотные свойства проявляются только для N и P, для As и Sb – амфотерные свойства, а для Bi основные.

При взаимодействии с галогенами образуется 2 типа соответствующих производных:

Э+5Г5 (Г = F, Cl, Br)

Э+3Г3 (Г = F, Cl, Br, J)

Соответствующие галогенопроизводные взаимодействуют с водой с образованием различных продуктов гиролиза.

Фосфор

Фосфор в природе встречается в связанном состоянии в основном в виде фосфат – ионом (РО43-)

Фосфор встречается в виде следующих основных минералов

3Са3(РО4)2 Са Х2      (Х = F, Cl,OH-)

В зависимости от типа заместителя – различ.: фтор-, хлор– и гидроксилапатиты.

Фосфориты Са3 (РО 4) 2 Фостор встречается в природе в виде моноизотопа с массовым

числом 31. Однако, известны радиоктивные изотопы фосфора. Общее содержание в земной коре около 0,1 %.

Получение

В промышленности фосфор получают при восстановлении углерода в электродуговой печи при высокой температуре.

Суммарная схема процессов:

Са3(РО4)2 + 5С + 3SiО2 → 2Р + 5СО↑ + 3СаSiО3

3СаОР 2О5 + 3SiО3 → 3СаSiО3+ Р2О5

P2O5 + 5C → 2P + 5CO↑

Для Р в настоящее время известно 2 аллотропных модифика

ций. Из них наиболее устойчивыми являются следующие:

• Белый фосфор

Получают при восстановлении ортофосфатов при быстром охлаждении паров, t = 44° С.

Это мягкое, воскообразное вещество, химически активное, окисляющее на воздухе, при этом наблюдается свечение. р = 1.7 г/см3. Вещество ядовитое.

Белый фосфор – это молекулярное соединение, построенное из тетраедров. Р4

• Красный фосфор

Получен из белого при нагревании без доступа воздуха, t = 350° С.

Это вещество – малоактивное, не ядовитое, представляет собой полимер. Широко используется в практической деятельности.

р=2-2,4 г/см3

Черный фосфор

Получен из белого фосфора при t = 200° С, t = 12000 атм. Это вещество обладает полупроводниковыми свойствами, химически инертно. Структура аналогична графику р = 2,7 г/см3

ЛЕКЦИЯ 31

Основные соединения фосфора. Гидриды фосфора

Известны следующие гидриды фосфора:

РН32 – фосфин (представляет собой газообразное вещество с неприятным запахом, очень ядовитое).

При непосредственном взаимодействии фосфора с Н2РН3 получить нельзя. РН3 образуется при действии на фосфиды Ме сильных минеральных кислот или Н 2О. Кроме того, РН3 образуется при взаимодействии фосфора с горячими щелочами.

Са3Р2 + 6HCl →2PH3↑ + 3CaCl2 Mg2P2 + 6H2O → 2PH3↑ + 3Mg(OH)2

Наряду с РН3 в качестве побочного продукта происходит образование других гидридов:

P2H4 – жидкость; Р12Н6 – твердое вещество. Эти гидриды неустойчивы и воспламеняются на воздухе:

H – P – P – H

Однако, при взаимодействии с сильными минеральными кислотами (HСlO4, HCl, HJ, HB) образуются соединения аналогичные аммиаку.

РН3 + HJ → [PH4]+ J

Иодистый фосфоний.

И при действии воды распадаются с образованием следующих соединений:

[PH4]J + H2O → PH3↑ + H3O+ + J-

Оксиды фосфора

При окислении кислорода воздуха (при недостатке О2) проис-ходит образование Р2О3

Р2О3 представляет собой легкоплавкое кристаллическое ве-щество. Хорошо растворим в воде. Tплав. = 24о С.

Р2О3 + 3Н2О →2Н3РО3

Н3РО3 является двухосновной кислотой (соли фосфориты), является кислотой средней силы. Для нее возможно образование двух типов солей. Однозамещенные соли называются дигидрофосфитами (NaH2PO3), двухзамещенные соли – гидрофосфиты (Na2HPO3). При полном окислении фосфора, особенно при повышенной температуре происходит образование оксида Р (V)

– Р2О5 · Р2О5 – является кислотным оксидом, представляет собой кристаллическое вещество, температура правления около 536 оС. При взаимодействии с Р2О возможно образования ряда фосфорных кислот.

ХР2О5 + Н2О → (НРО3)Х      Х =3:8

Метафосфорные кислоты представляют собой циклические структуры. Можно считать, что метафосфорные кислоты имеют полимерную структуру. Для них известны соответствующие соли, которые находят соответствующее применение в технике. Пример, Na3P3O9 и Na 6P6O18 используется как умягчитель воды.

При более высокий температуре взаимодействие идет с образованием фторофосфорной кислоты

Р2О5 + 3Н2О → 2Н3РО4

Н3РО4 – является трехосновной кислотой. В промышленности получены действием Н2SO4 конц. на фосфориты.

Ca3(PO4)2 + Н2SO4→ CaSO4↑ + H3PO4

H3PO4 – кристаллическое вещество с температурой плавления = 42 оС.

ЛЕКЦИЯ 32

Соли

Образуется три типа солей. Почти все дигидрофосфаты хорошо растворимы в воде, из гидрофосфоритов и фосфатов растворимы в воде только лишь соли щелочных металлов и аммония.

Ортофосфорная кислота широко используются для получения минеральных удобрений.

Р2О5 + 2Н2О → Н4Р2О7

Ипрофосфорная кислота Н4Р2О7 – представляет собой сложную систему имеющую по-

лимерное строение, является более сильной кислотой, по сравнению с фторфосфорной. Образуется соли как средние, так и кислые.

Галлоид – производные фосфора

Фосфор взаимодействует активно с галогенами (с образованием ЭГ3, ЭГ5). Наиболее важные из них: PCl3, PCl 5.

При пропускании хлора в кипящий фосфор происходит образование PCl3, представляющей собой жидкость с t кип. = 76 оС. Это соединение широко используется в органической химии при получении различных хлорсодержащих соединений

PCl3 + H2O → HCl + H2PO3

При пропускании газообразных Cl над PCl3 происходит образование PCl5, представляет собой неустойчивое кристалическое вещество.

PCl5 → PCl3 + Cl2↑

PCl5 используется в органической химии для получения различных хлорпроизводных.

PCl5 + Н2О →HCl + H3PO4

Мышьяк, сурьма, висмут

Sb, Bi, иногда встречаются в природе в чистом состоянии. Однако, чаще встречаются в связанном состоянии (в виде сульфидов или оксидов).

Минералы мышьяка +5, +3, -3 FeAsS – мышьяковый колчедан As2S3 – сульфид (3)

As2O3 – оксид (3) (белый мышьяк)

Общее содержание в природе 10-5 %.

Получение: As при восстановлении белого мышьяка As2O3 или при нагревании мышьяковистого колчедана.

FeAsSAs + FeS

As2O3 +CAs + CO2

Остальные элементы также получают при действии сильных восстановителей или на сульфиды, или на оксид. В ряде случаев в технологических процессах происходит деконцентрирование гидро– или пирометаллургическими способами.

От As к Bi происходит постепенное увеличение металлических свойств. Sb и Bi являются химически менее активными элементами, т.к. они не взаимодействуют с разбавленными минеральными кислотами при н.у. при нагревании взаимодействуют

с H2SO4 и HNO3.

As существует в природе в виде трех аллотропных модификаций:

Ά – модификац. серое кристаллическое вещество.

Β – модификац. черное амфорное вещество.

γ – модификац. желтое вещество.

ЗАКЛЮЧЕНИЕ

Следующие два десятилетия внесут значительные изменения в используемые нами материалы, которые определяют наш быт. Возникнут новые отрасли промышленности. Вспомните, что с появлением полимеров началось промышленное производство синтетических тканей, разработка люминофоров привела к созданию телевидения, а полупроводники привели к компьютерам. Металлы будут использоваться реже, так как в традиционных областях их применения специально сконструированные матери-алы имеют лучшие характеристики. Роль химических наук при этом, несомненно, возрастет, поскольку именно химики способны осуществлять такое конструирование и, следовательно, управлять свойствами новых материалов. В конечном итоге управление свойствами базируется на данных о составе, характере связей и геометрии материалов на атомно-молекулярном уровне, а это – традиционная сфера специфических интересов химика.

Наконец, способность использовать эти данные в практических целях зависит от уровня развития синтетической химии, а это вновь дело химика. Именно поэтому отрасли, связанные с применением новых материалов, ищут способных молодых химиков для своих научных центров, поэтому все больше химиков вовлекаются в материаловедческие исследования.

ТЕСТЫ 24 – 26 ТАБЛИЦА 31

Решение типовых расчетных задач

Алгоритмы решения задач:

Наш девиз моль

Для решения задач, описанных в тестах 24 – 26, предлагаю воспользоваться следующими алгоритмами:

задачи теста 25 решаются задачи с помощью пропорции, пропорция составляются следующим образом: граммы пишутся под граммами, моли – под молями, килоджоули – под килоджоулями, НО НЕИЗВЕСТНОЕ В ЗАДАЧЕ ПИШЕТСЯ ЧЕРЕЗ Х.

х находится методом перемножения крайних членов и деления его на известный внутренний член;

все данные задачи переводятся в одни и те же единицы (1 л=

= 1000 мл);

если в задаче два неизвестных, то задача решается с помощью системы с двумя неизвестными;

тест 24 (нахождение массовой доли) решается с помощью одной формулы w(омега) = m(вещества)/m(раствора) ·100%;

В этой задаче ОБЫЧНО первым действием находят МАССУ РАСТВОРЕННОГО ВЕЩЕСТВА (ЧИСЛИТЕЛЬ) УМНОЖАЯ МАССУ РАСТВОРА НА МАССОВУЮ ДОЛЮ ( В ДОЛЯХ ОТ 1: надо в процентах запятую перенести на два знака ВЛЕВО_).

ВО ВТОРОМ ДЕЙСТВИИ ПРИБАВИТЬ ИЛИ ОТНЯТЬ Х (МАССА ВОДЫ) к МАССЕ РАСТВОРА В ЗНАМЕНАТЕЛЕ ГЛАВНОЙ ФОРМУЛЫ. В первом СЛУЧАЕ ИДЕТ РАЗБАВЛЕННИЕ, во втором УПАРИВАНИЕ РАСТВОРА!!!

ТРЕТЬИМ ДЕЙСТВИЕМ ПОДСТАВЛЯЕМ В ГЛАВНУЮ ФОРМУЛУ ЧИСЛИТЕЛЬ (1) и ЗНАМЕНАТЕЛЬ (2) и УМНОЖАЕМ НА 100 ПРОЦЕНТОВ!

ОСТОРОЖНО!!! В ТЕСТЕ 24 МОГУТ СПРАШИВАТЬ МАССУ ВЕЩЕНСТВА!!! ТОГДА адо найти массу 1 и 2-го ВЕЩЕНСТВА И СЛОЖИТЬ и ЭТО ОТВЕТ!!!

тест 25. Если надо перевести граммы в моли, то n = m(вещества)/M(молярная масса). Далее решается пропорция (смотреть выше); ПРОПОРЦИЮ СОСТАВЛЯЕМ ПО УРВНЕНИЮ ДАННОМУ В ЗАДАЧЕ!!!

Второй вариант задачи Теста 25: ЗАДАЧА НА ИЗБЫТОК И НЕДОСТАТОК.

ВСЕ ЗАДАЧИ В ХИМИИ РЕШАЮТСЯ ПО НЕДОСТАТКУ !

30 л 20 л

1N2 + 3H2=2NH3

1 моль азота : 3 моль водорода (по уравнению )

H2 – 90 л , но по условию задачи 20 , ЗНАЧИТ ВОДОРОД В ИЗБЫТКЕ!

Тогда N2 =20\3 = 6.6 л3

В избытке 30 л – 6.6 л = 23.4 л ( N2 )

Ответ 23.4 л N2 не прореагировало .

тест 26. Задача решается по уравнению химической реакции: сначала граммы или объём переводятся в моль (n = V/VM, где VM = 22,4 г/моль).

2. По уравнению реакции находим количество искомого соединения.

3. Затем переводим мои в граммы: m = M·n;

ПРАВИЛЬНОСТЬ ВСЕХ ФОРМУЛ ПРОВЕРЯЙТЕ ЧЕРКЕЗ НАИМЕНОВАНИЯ, ВХОДЯЩИХ В НИХ ВЕЛИЧИН!!!

Все в одних единицах измерения(миллилитры переводятся в литры или наоборот)

Вычислить содержание (массовая доля в %) меди в оксиде меди(II)?

Находим молекулярную массу СuO(M Сu и О)

М(CuO)=64+16=80г/моль(по таблице Д.И. Менделлеева)

Вычисляем содержание меди в оксиде меди(II)

W=Ar/Mr

64г/моль: 80г/моль=0,8=80%

В 4 кг раствора едкого натрия содержится 400 г NaOH. Вычислить массовую долю(w) NaOH в растворе?

Найдём w NaOH в растворе:

w= m(вещ-ва)/ m(ра-ра) · 100%

Переведём кг в г:

4 кг=4000г

w=400 г/4000 г ·100%= 10%

Взяли 2 кг 20%– ного раствора серной кислоты. Вычислите массу воды и серной кислоты в этом растворе?

w= m(в-ва)/ m(р-ра) · 100%

Находим массу кислоты

2 кг = 2000 г

m( в-ва)=W· m(р-ра)

m( в-ва)=0,2·2000 г= 400 г Н2SO4

Находим массу воды

2000 г– 400 г= 1600 г H2O

Какова масса 5 моль аммиака?

M(NH3)=14+3·1=17 г/моль(по таблице)

n=m/M

m=n·M

m=5 моль · 17 г/моль=85 г

Найти количество (моль) NaOH в 80 г его?

Находим М NaOH:

М(NaOH)=23+16+1=40г/моль (по таблице)

Найти n NaOH:

n=m/M

n= 80г : 40г/моль=2 моль

Вычислить плотность озона по воздуху (D = M(O3)/M(воздух))?

Найти М(О3):

М(О3)=16 гр/моль·3(атома)=48 г/моль(по таблице)

Найти D(воздух):

Средняя М воздуха =29 г/моль, D(воздух) = M(O3)/M(воздух)

D(плотность озона по воздуху)=48 г/ моль:29г/моль=1,65

Какой объем занимают 2 моль метана?

1 моль СН4 -22,4 л/моль(по закону Авагадро)

2 моль СН4 ·22,4 л/моль =44,8 л

Вычислить массу 33,6 л аммиака?

1)моль NH3-22,4л(по закону Авогадро)

n = V/VM

Х = 33,6 л/ 22,4 л/моль = 1,5моль

1,5 моль NH3-33,6 л

2)Найдём m аммиака

M(NH3)=14+3·1=17 г/моль(по таблице)

3)m=M·n

m = 17 г/моль·1,5 моль=25,5 г NH3

Какой объем занимают 64 г кислорода?

1)Найдём М(О2):

М(О2)= 16·2= 32 г/моль

1моль О2-32г/моль

х моль-64г

n=m/M

x=64 г : 32 г/моль=2 моль

2)По закону Авогадро:

1 моль О2-22,4л

2 моль – Х

V=n·VM, отсюда следует n = V/VM

X=2 моль·22,4 л/моль=44,8 л O2

Найти выход(%)оксида кальция ,если при нагревании100 г карбоната кальция получилось 40 г CaO?

CaCO3=CaO+CO2 (реакция проходит при нагревании)

1)Найдём выход СаО по теории (как если бы СаО получилось с 100%-ным выходом):

100 г-СаСО3-Х г СаО

100г/моль СаСО3 – 56 г/моль СаО(по таблице)

2)Найдём n СаСО3:

n = m/M = 100 г/100 г/моль = 1 моль

Х=56г/моль·100г:100г/моль=56 г СаО при 100% выходе(по теории)

Теоретический выход СаО:

М(СаО) = 56 г/моль

В= Qпр / Qтеор ·100%

40 г/56г ·100 %=0,71=71%

При сжигании органического вещества получено 0,18 г Н2О и 224 мл СО2 при н.у. Найти простейшую формулу.

1)Найти n(H):

n=m/M

n( H2O)=0,18г:18г/моль=0,01 моль,

В ОДНОЙ МОЛЕКУЛЕ ВОДЫ СОДЕРЖИТСЯ ДВА АТОМА ВОДОРОДА, ПОЭТОМУ:

n(H)=2·n( H2O)=0,02 моль

2)Найти n(СО2):

n(CO2)=n(c) =V/VM=224 мл/22400 мл/моль=0,01моль С

3)Найти простейшую формулу (соотношение С:Н):

С:Н=0,01:0,02= 1:2 СН2-простейшая формула

ЕСЛИ В ЗАДАЧИ ДАНО M ЧЕРЕЗ ПЛОТНОСТЬ ОТ ОДНОГО ГАЗА ПО ДРУГОМУ ТО ПЛОТНОСТЬ УМНОЖАЕТСЯ НА МОЛКУЛЯРНУЮ МАССУ ТОГО ГАЗА ПО КОТОРОМУ ОНА ВЗЯТА Д х/возд.= 2 ТОГДА Мх = 2 ПО МНОЖЕНОЕ НА 29г/моль =58г/моль

И ТОГДА ИСТЕННАЯ ФОРМУЛА НАХОДИТСЯ ПОСЛЕ УМНОЖЕНИЯ ПРОСТЕЙШОЙ ФОРМУЛЫ 58/16=4

ИСТИННАЯ ФОРМУЛА ДАНОГО СОЕДИНЕНИЯ ЯВЛЯЕТСЯ C4H8

СПИСОК ЛИТЕРАТУРЫ

Зоммер К. Аккумулятор знаний по химии. М.: Мир, 1977

293 с.

ОБЩАЯ ХИМИЯ. Состояние веществ и химические реак-ции. Учеб. пособие для вузов. М.: Химия, 1990. -352 с.

Ахметов Н.С.Общая и неорганическая химия. Учебник для вузов М.:Высш. школа,1981. -679 с.

Пиментел Дж., Кунрод Дж. Возможности химии сегодня и завтра М.: Мир, 1992. – 288 с.

Кукушкин Ю.Н. Соединения высшего порядка. Л.: Химия, 1991. – 112 с

М.И.Бармин, В.В.Мельников. Взаимосвязь строения и фунгицидной активности аминоазолов и их производных. СПб.:

СПГУТД, 2005. – 127 с.

Приложение 1

Кислота

Название

Формула

Название соответствующих

нормальных солей

Азотная

HNO3

Нитраты

Азотистая

HNO2

Нитриты

Борная (ортоборная)

H3BO3

Бораты (ортобораты)

Бромоводород

HBr

Бромиды

Иодоводород

HI

Иодиды

Кремниевая

H2SiO3

Силикаты

Марганцовая

HMnO4

Перманганаты

Метафосфорная

HPO3

Метафосфаты

Мышьяковая

H3AsO4

Арсенаты

Мышьяковистая

H3AsO3

Арсениты

Ортофосфорная

HPO4

Ортофосфаты (фосфаты)

Двуфосфорная

H4P2O7

Дифосфаты (пирофосфаты)

(пирофосфорная)

Двухромовая

H2Cr2O7

Дихроматы

Серная

H2SO4

Сульфаты

Сернистая

H2SO3

Сульфиты

Угольная

H2CO3

Карбонаты

Фосфористая

H3PO3

Фосфиты

Фтороводород

HF

Фториды

(плавиковая кислота)

Хлороводород

HCl

Хлориды

(соляная кислота)

Хлорная

HClO4

Перхлораты

Хлорноватая

HClO3

Хлораты

Хлористая

HClO2

Хлориты

Хлорноватистая

HClO

Гипохлориты

Хромовая

H2CrO4

Хроматы

Циановодород

HCN

Цианиды

(синильная кислота)

Продолжить чтение