Читать онлайн Электрохимические технологии и материалы бесплатно
Предисловие
В предлагаемом учебном пособии рассматриваются основы некоторых электрохимических технологий, а также критерии подбора применяемых в них материалов. Электрохимические методы широко используются в различных отраслях промышленности. Они имеют существенные преимущества перед химическими. Электрохимические способы полностью вытеснили химическое получение алюминия, магния, натрия, хлора, перекисных соединений и некоторых других.
Несомненными достоинствами электрохимического способа синтеза считаются высокая чистота продуктов, возможность применения более дешевого сырья и получение ценных побочных веществ. Недостатками являются большой расход электроэнергии и ограниченная скорость некоторых электрохимических процессов.
Ряд электрохимических технологий широко освещен в монографиях, учебниках и справочниках. В то же время учебные пособия по основным разделам прикладной электрохимии в последние 30 лет в нашей стране не издавались.
В пособии рассмотрены материалы и принципы создания электрохимических технологий, электролиз водных растворов и расплавов, анодная обработка материалов, электрохимический синтез ряда неорганических и органических веществ, основы гидроэлектрометаллургии и химические источники тока.
Пособие предназначено для студентов старших курсов бакалавриата и специалитета, обучающихся по направлениям подготовки 04.03.01 – Химия и 04.05.01 – Фундаментальная и прикладная химия.
Глава 1. Материалы и создание электрохимических технологий
Практическая реализация электролиза или генерирования электроэнергии проводится в электрохимических реакторах (ячейки, ванны, батареи, электрохимические станки и др.). Наиболее распространен реактор с плоскопараллельными, чередующимися катодами и анодами. Электроды одинаковой полярности включены параллельно [1–4].
Максимальная электрическая мощность единичной электрохимической ячейки и токовая нагрузка меняются в широких пределах. Соответственно и размеры электролизеров, вид и площадь поверхности электродов изменяются от микрона до нескольких метров.
Многие электрохимические процессы проводятся в концентрированных растворах кислот, щелочей или солей. Указанные электролиты обладают повышенной коррозионной активностью. В связи с этим материалы, из которых изготовлены электролизеры, должны обладать высокой коррозионной стойкостью. Для щелочных электролитов рекомендуется применять малолегированные стали, для кислых или концентрированных растворов солей – высоколегированные нержавеющие стали или полимерные конструкционные материалы. В качестве материала всё большее применение находит фторопласт [2–4].
Важное значение для электрохимических процессов имеет выбор конструкции и материала электродов. От данного выбора зависят не только технологические, экономические показатели производства (удельная затрата электроэнергии, селективность процесса, выход целевого продукта по току, чистота получаемых веществ), направление протекания процесса, но и затраты на организацию производства и ремонтные работы [2].
Каждое электрохимическое производство имеет свои индивидуальные характеристики, а также требования к условиям проведения, материалу, конструкции электродов и устройству самого электролизера.
Например, некоторые производства требуют минимального напряжения, поэтому материалы катода и анода должны иметь более низкое перенапряжение протекающих на электродах процессов. Если необходимы высокие значения электродных потенциалов, то подбирают такие материалы для катода и анода, чтобы перенапряжение выделения водорода и, соответственно, кислорода было максимально большим.
Свойствами материалов определяются не только кинетика протекающих процессов и энергетические показатели, но и конструктивные формы электродов и электролизера. При выборе электродных материалов учитывают их стойкость и стоимость.
В выборе материала катода обычно проблем не возникает. При электрохимическом получении хлора, хлорсодержащих продуктов, щелочи, водорода и кислорода на катоде протекает восстановление водорода. В большинстве случаев материалом для катода служит сталь, которая достаточно устойчива в применяемых электролитах. В сильно агрессивных кислых средах используют графитовые катоды. В некоторых случаях в электролит вводят добавки, образующие на катоде пленки и препятствующие восстановлению получаемых продуктов. Для уменьшения потенциала разряда водорода на катод наносят слой активного покрытия [1].
Наибольшие трудности возникают при выборе материала анода. Выбор анодных материалов ограничен высокой коррозионной активностью среды. Лучшими анодами являются аноды из платины или ее сплавов, но стоимость их высока. В хлорном производстве платиновые аноды были заменены на графитовые. Эти электроды достаточно быстро изнашиваются, их замена вызывает перерывы производственного цикла и требует дополнительные затраты.
Продукты коррозии электродов загрязняют электролит и получаемые продукты. В связи с этим к электродным материалам предъявляется и требование: они должны иметь малую скорость саморастворения и практически не растворяться при прекращении электролиза. Полностью нерастворимых анодов нет и каждый вид материала имеет свои границы устойчивости. Не допускается работа анодов в критических к ним условиям.
Помимо платины в качестве анодов используют металлы IV и V групп периодической системы элементов Д. И. Менделеева и их сплавы. Из-за образования на поверхности анода оксидного слоя, имеющего полупроводниковые свойства, указанные металлы переходят в пассивное состояние. В качестве анода активно работает поверхностная оксидная пленка, роль металла сводится к подводу тока. Оксидные слои, формирующиеся на металлах платиновой группы, проводят ток и служат активным покрытием анода. В некоторых средах в качестве анода можно использовать никель, свинец и оксиды рутения, свинца и марганца [1–4].
Находят применение составные электроды. Они представляют собой композицию, состоящую из пассивирующегося металла, на который наносят активный слой, работающий в качестве анода. Хорошим материалом для анодной основы является титан, имеющий высокую коррозионную стойкость и подвергающийся разной механической обработке. На титановую подложку наносят активную массу, которая выступает в роли анода. На свободной поверхности титана создается запорный пассивный слой, предотвращающий растворение.
Активный слой может состоять из металлов платиновой группы и оксида одного металла или смешанных оксидов с достаточной электронной проводимостью (PbO2, MnO2, RuO2 и др.). Срок службы составных электродов определяется природой, коррозионной стойкостью активного покрытия и его пористостью. Толщина активного слоя составных электродов и способы нанесения зависят от типа покрытия, коррозионной стойкости и области применения анода. Толщина платинового или слоя оксида рутения может меняться от десятых долей до нескольких микрон, а толщина оксидно-марганцевого, магнетитового или оксидно-свинцового покрытия должна быть 2–4 мм.
Металлические покрытия наносят, как правило, гальваническим способом, применяют также приварку тонкой фольги и разные виды напыления. Оксидные слои наносят электрохимическим (PbO2), термохимическим (RuO2, MnO2) способами или нанесением металлического покрытия с последующим окислением.
Большое распространение в последнее время находят окисно-рутениевотитановые аноды (ОРТА). Металлическая титановая основа делает их удобными для изготовления электродов промышленных электролизеров. Созданы компактные и проницаемые для газа электроды, которые обеспечивают отвод выделяющихся на аноде газов на обратную сторону электрода. Срок службы таких электродов выше графитовых. Они имеют постоянные размеры и электрохимические характеристики, что позволяет сохранять необходимое напряжение и выход целевого продукта. Вместо титана в качестве подложки используют и биметаллические композиции.
Преимуществом ОРТА является высокая селективность и больший выход по току многих продуктов по сравнению с другими анодами.
К недостаткам электрода относят сравнительно высокую стоимость. Окисно-рутениевотитановые аноды не являются универсальными электродами. При неправильной эксплуатации они могут разрушаться. Эти электроды не рекомендуется использовать в условиях, когда возможна временная или периодическая катодная поляризация анода. При катодной поляризации нарушается пассивация ОРТА и они выходят из строя.
Механизм выделения кислорода на аноде существенно зависит от состава электролита, pH и материала анода [4]. Восстановление кислорода связано с природой частиц, адсорбирующихся на аноде, что ведет к изменению его состояния и потенциала выделения О2. Например, потенциал разряда кислорода в сильнощелочных средах на Pt-, MnO2– и PbO2-анодах меньше, чем в кислых. Меняется и перенапряжение выделения кислорода в зависимости от материала анода. При равных условиях, потенциал выделения кислорода в кислых средах на анодах из PbO2 выше, чем на платине, а в щелочных средах – наоборот. Из-за разного механизма выделения кислорода в сильнощелочных средах на графитном аноде практически не реализуется окисление графита, в то время как в кислых средах при разряде молекул воды с образованием атомарного кислорода наблюдается интенсивное окисление с образованием СО2.
Технологические и технико-экономические показатели работы электролизеров существенно зависят от конструкции электродов. Она должна обеспечивать достаточно развитую поверхность для интенсификации процесса и создания компактных электролизеров. Работающие поверхности электродов должны быть максимально сближены, а межэлектродное расстояние (МЭР) по всей поверхности электродов должно быть одинаковым. В разных вариантах МЭР колеблется от долей миллиметра до нескольких сантиметров [4]. Его увеличение приводит к росту омических потерь, уменьшение ведет к возможности короткого замыкания или к изменению концентрации реагирующих веществ. В электролизерах с изнашивающимися электродами предусматривается специальная система для возобновления МЭР по мере износа электродов [1].
В целях снижения потерь напряжения необходимо учитывать и отвод газов из зоны прохождения тока по электролиту. Конструкция электродов должна способствовать как внутренней циркуляции электролита в электролизере, так и внешней, необходимой для поддержания теплового режима. Желательно, чтобы электроды были просты в изготовлении, удобными при транспортировке, монтаже и хранении. В большинстве случаев конструкция электродов и материал, из которого они изготавливаются, определяется спецификой электрохимического процесса.
Электроды бывают гладкие, жидкие, кусковые и пористые [2].
По типу включения различают монополярные и биполярные электроды. У монополярных электродов вся поверхность поляризуется одним знаком, требования к материалу и поверхности электрода одинаковы для всех его частей. В биполярных системах одна часть электрода работает как катод, другая как анод. Требования к материалу и активно работающей поверхности частей электрода разные. Обе части этого электрода должны быть надежно электрически соединены с возможно меньшим сопротивлением.
Геометрические формы электродов очень разнообразны и зависят от ряда факторов. Встречаются плоские, перфорированные, пластинчатые, сетчатые и жалюзийные электроды. В ряде случаев электроды используют для регулирования теплового режима и их выполняют как теплообменники. В таких электродах предусмотрена система каналов для протока регулирующих температуру агентов.
Получили распространение электроды, проницаемые для газов и жидкости, что используется для отвода газовых и жидких продуктов электролиза.
Между разноименными электродами часто помещают сепараторы (разделители) из диэлектрических материалов. Они могут использоваться для предотвращения случайного соприкосновения электродов, а также разделения анолита и католита. Сепараторы не должны сильно увеличивать омические потери, должны быть устойчивы к применяемым электролитам, термическим условиям и механической нагрузке [2–4].
Применяют сепараторы из вулканизированного каучука, пластмассы и стекловолокна. Широкое распространение в настоящее время получили ионно-обменные мембраны, которые играют роль сепараторов. Они используются в системах очистки воды, получения чистых растворов, обессоливания и др. [1].
Проблема разработки новых материалов, используемых в качестве катодов или анодов, находится в центре внимания исследователей. Работы по созданию и проверке новых коррозионностойких катодных и анодных материалов ведутся постоянно.
Глава 2. Химические источники тока
2.1. Классификация и основные характеристики ХИТ
Химическими источниками тока (ХИТ) называют электрохимические системы, превращающие химическую энергию в электрическую [2–8].
По характеру работы ХИТ различают:
1) первичные источники тока, их активные вещества однократно используются;
2) вторичные ХИТ или аккумуляторы. Активные вещества, потраченные при разряде, могут быть восстановлены зарядом от внешнего источника постоянного тока;
3) топливные элементы или электрохимические генераторы. Активные вещества подводятся к электродам непрерывно, чем обусловливается бесперебойная работа элемента [4–6].
Электрические характеристики ХИТ
Важными характеристиками элементов являются их электродвижущая сила (ЭДС) или напряжение разомкнутой цепи (Uрц), т.е. разность потенциалов электродов, измеренная при отсутствии тока во внешней цепи, и напряжение при работе источника, т.е. при замкнутой цепи. Различают начальное, конечное и среднее напряжение при разряде или заряде.
Напряжение при разряде Uр меньше Uрц поскольку потенциалы электродов при разряде меньше, чем при разомкнутой цепи, а часть ЭДС теряется на преодоление внутреннего сопротивления элемента.
где Еа и Ек– потенциалы электродов при разряде; I – ток разряда; r – внутреннее сопротивление ХИТ; R – внешнее сопротивление или нагрузка при разряде.
При заряде напряжение больше Uрц.
где Е`а и `Ек – потенциалы электродов при заряде; I` – ток заряда.
Внутренне омическое сопротивление источника складывается из омического сопротивления электродов, сопротивления электролита и сепараторов. Его значение зависит от режима разряда. При разряде малыми токами внутреннее сопротивление не велико, а при больших плотностях тока может оказаться значительным. Внутреннее сопротивление стремятся сделать небольшим. Для этого уменьшают межэлектродное расстояние, используют электролит с высокой проводимостью и выбирают реакции, протекающие с большей скоростью.
Следующие важные характеристики ХИТ – емкость и энергия. Емкость – количество электричества, которое отдает химический источник тока при разряде в заданных условиях. Если элемент разряжается током I (А) в течение времени τ (ч), то емкость равна (в А ∙ ч):
При разряде на внешнее сопротивление (R) сила тока во времени меняется и емкость определяется как
При разряде напряжение падает, поскольку растут со временем поляризация и омическое сопротивление. График изменения Uр за время разряда ХИТ τр и изменения Uз за время его заряда τз при постоянной силе тока называют разрядно-зарядной характеристикой аккумулятора (рис. 1).
Рис. 1. Зарядно-разрядная характеристика ХИТ
Энергия – количество энергии, которое при разряде ХИТ отдает во внешнюю цепь. Это произведение разрядной емкости на среднее напряжение. При разряде элемента постоянная сила тока описывается уравнением (6), а при разряде на постоянное внешнее сопротивление рассчитывают по выражению (7):
При определении емкости от элемента отбирается меньшее количество электричества, чем можно получить при полном разряде, т. е. при снижении разрядного напряжения до нуля. Практический интерес представляет разряд до тех пор, пока его напряжения достаточно для обеспечения работы прибора, потребляющего электроэнергию.
Емкость зависит от условий эксплуатации ХИТ. При интенсивном разряде в короткое время сказывается отрицательное влияние поляризации, но уменьшаются потери емкости из-за саморазряда. При длительном разряде относительная потеря емкости за счет саморазряда растет. Максимальную емкость элемент имеет при определенном режиме, характерном для каждого ХИТ.
Удельная энергия – энергия источника, отнесенная к единице массы или объема активного вещества. Сравнения между собой элементов различных типов и размеров проводят по кривым, которые характеризуют зависимость удельной емкости от удельной мощности. У всех элементов с увеличением удельной мощности снижается удельная энергия. Желательно, чтобы снижение было минимальным.
Сохранность и саморазряд. Саморазряд – это химические реакции, приводящие к потере емкости при хранении элемента. Его скорость позволяет судить о степени сохранности источника. Саморазряд характеризуется остаточной емкостью после определенной продолжительности хранения. Его могут вызывать:
– катионы металлов, имеющие более положительный потенциал, чем металл анода. Катионы восстанавливаются, возникают коротко замкнутые пары, которые способствуют коррозионному разрушению анода;
– ионы переменной валентности, например Fe2+и Fe3+. Ионы Fe3+ восстанавливаются до Fe2+ на аноде, вызывая коррозию. Ионы Fe2+ у катода окисляются деполяризатором, вновь образуются катионы трехвалентного железа и взаимодействуют с анодом;
– соприкосновение металла с растворами разной концентрации ведет к образованию короткозамкнутых концентрационных элементов, а местные пары могут возникать и при неоднородности электрода;
– наличие окислителя или саморазряд анода, например, при доступе воздуха к цинковому аноду:
– наличие восстановителя или саморазряд катода.
По заряд-разрядным кривым можно рассчитать значения емкости, энергии, коэффициента полезного действия ХИТ при его эксплуатации в конкретном режиме. Разница значений начального Uрн и конечного Uрк напряжений разряда может быть достаточно большой (см. рис. 1), поэтому для расчетов часто используют средние напряжения разряда Uср.р.
Напряжение разряда ХИТ зависит от технологических особенностей, температуры, режима разряда, а также конструкции источника тока.
2.2. Первичные химические источники тока
К первичным ХИТ относятся источники тока, активные вещества которых используются однократно. Рассмотрим особенности конструкции таких элементов, механизмы токообразующих процессов и эксплуатационные характеристики ХИТ данного типа.