Читать онлайн Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей бесплатно

Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Введение

Уважаемые будущие, настоящие и вчерашние курсанты автошкол! Из личного опыта знаем: каждому, кто готовится к нелегкому жизненному испытанию под названием «водительские курсы», очень уж хочется как-нибудь «опустить» теорию и поскорее сесть за руль автомобиля, пусть даже учебного. Равно как и тем, кто уже ерзает на стуле, сидя за партой, и с тоской изучает, что такое гужевая повозка или чем велосипед отличается от мопеда.

Однако же в теоретической части есть немало полезной и интересной информации. Проблема в том, что часто в стандартных учебниках она изложена сухо и непонятно. По этой причине и родилась книга, которую вы держите в руках.

Поверьте, все, что в ней содержится, пригодится не только для сдачи зачетов и экзаменов на пути к заветной цели, но и послужит вам в будущем хорошим подспорьем. Ведь гораздо лучше «опустить» не теорию, а звание «чайника» в водительской карьере. Для этого необходимо обладать знаниями, чтобы не тратить пол-стоимости автомобиля на замену целого узла вместо одного подшипника.

К сожалению, подобный «развод на деньги» происходит сплошь и рядом.

Так что читайте, запоминайте, усваивайте, переваривайте, сдавайте экзамены, покупайте машину и становитесь настоящим водителем!

1. Общее устройство автомобиля

К транспортным средствам категории «В»

относятся автомобили, разрешенная максимальная масса которых не превышает 3500 кг

с количеством сидячих мест, помимо сиденья водителя, не более восьми.

Любой легковой автомобиль состоит из следующих элементов (рис. 1.1):

♦ двигателя;

♦ трансмиссии;

♦ ходовой части;

♦ механизмов управления;

♦ электрооборудования;

♦ дополнительного оборудования;

♦ кузова.

Двигатель – это «сердце» машины. Он сжигает топливо и преобразует тепловую энергию в механическую: заставляет вращаться коленчатый вал, затем вращение через трансмиссию передается на колеса (составляющую ходовой части).

Так машина приводится в движение.

Рис.1 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.1.

Общий вид легкового автомобиля: 1 – фара; 2 – вентилятор системы охлаждения двигателя; 3 – радиатор системы охлаждения двигателя; 4 – распределитель зажигания; 5 – двигатель; 6 – аккумуляторная батарея; 7 – катушка зажигания; 8 – воздушный фильтр; 9 – телескопическая амортизаторная стойка передней подвески; 10 – бачок омывателя ветрового стекла; 11 – коробка передач; 12 – ручка стеклоподъемника; 13 – внутренняя ручка двери; 14 – рычаг задней подвески; 15 – элемент обогрева заднего стекла; 16 – основной глушитель; 17 – задний амортизатор; 18 – задний тормоз; 19 – балка задней подвески; 20 – поперечная штанга задней подвески; 21 – топливный бак; 22 – рычаг стояночной тормозной системы; 23 – дополнительный глушитель; 24 – вакуумный усилитель тормозной системы; 25 – вал привода передних колес; 26 – передний тормоз; 27 – штанга стабилизатора передней подвески

Во время движения водитель управляет автомобилем с помощью рулевого колеса и педалей, представляющих собой механизмы управления. Он включает свет фар и указатели поворотов, то есть пользуется электрооборудованием.

При этом водитель пристегнут ремнем безопасности, ему тепло (работает обогреватель) – задействовано дополнительное оборудование.

Кузов среднестатистического легкового автомобиля состоит из моторного отсека (там находится двигатель), пассажирского салона и багажного отделения. Он же является несущей конструкцией для узлов и агрегатов автомобиля.

Современные автомобили можно классифицировать по нескольким признакам: по типу кузова, типу и рабочему объему двигателя, типу привода колес и габаритным размерам.

Классификация по типу кузова

Кузова современных легковых автомобилей разнообразны и многофункциональны, хотя, конечно, их основное предназначение – перевозка пассажиров и небольшой поклажи.

В зависимости от формы кузова и количества посадочных мест легковые автомобили делятся на следующие типы.

Седан – машина с двумя, четырьмя или даже шестью боковыми дверями. Характерные черты – моторный отсек и багажное отделение у седанов вынесены наружу, то есть изолированы от салона (рис. 1.2). Седаны, имеющие шесть боковых дверей и перегородку, отделяющую водительскую секцию салона от пассажирской, называют лимузинами.

Рис.2 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.2. Седан – самый распространенный тип кузова

Купе – двухдверный кузов с одним или двумя рядами полноразмерных или укороченных сидений (есть варианты, в которых задние сиденья – детские) (рис. 1.3).

Универсал – автомобиль с дверью в задней стенке кузова. Отличается от остальных типов тем, что имеет постоянный грузовой отсек, не отделяющийся от пассажирского стационарной перегородкой (рис. 1.4).

Рис.3 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.3. Купе

Рис.4 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.4. Универсалы любят дачники и путешественники

Хетчбэк – гибрид седана и универсала.

В наше время довольно популярный тип кузова. Как и в универсале, в хетчбэке задний ряд сидений складывается (рис. 1.5).

Рис.5 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.5. Хетчбэк

Вагон – он же мини-вэн. Характерные признаки – моторный отсек и багажное отделение не выступают за пределы кузова (рис. 1.6).

Рис.6 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.6. Мини-вэн удобен для семейных поездок

Кабриолет – автомобиль со складывающимся верхом и опускающимися боковыми стеклами окон (рис. 1.7).

Рис.7 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.7. Кабриолет

Джип – все более популярный тип кузова: вытянутый вверх хетчбэк (рис. 1.8).

Рис.8 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.8. Джип

Пикап – закрытая кабина (одно– или двухрядная) и открытая платформа для грузов с откидным задним бортом (может иметь мягкий или жесткий верх) (рис. 1.9).

Рис.9 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.9. Пикап удобен при перевозке грузов

Классификация по типу и рабочему объему двигателя

Большинство современных автомобилей оснащено двигателями, работающими на бензине или на дизельном топливе. Следовательно, по типу двигателя автомобили делятся на бензиновые и дизельные.

По рабочему объему двигателей машины классифицируются следующим образом:

особо малый класс (так называемые малолитражки) – до 1,1 литра;

малый класс – от 1,1 до 1,8 литра;

средний класс – от 1,8 до 3,5 литра;

большой класс – 3,5 литра и более.

Классификация по типу привода колес

В зависимости от того, на какую колесную ось (переднюю или заднюю) передается крутящий момент от двигателя, автомобили делятся на заднеприводные, переднеприводные и полноприводные.

Заднеприводные – автомобили, у которых крутящий момент от двигателя передается на задние колеса (рис. 1.10).

Рис.10 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.10. Заднеприводной автомобиль

Движение происходит по толкательному принципу: задние (ведущие) колеса толкают вперед автомобиль, а передние (ведомые) служат для изменения направления движения.

Переднеприводные – автомобили, в которых крутящий момент от двигателя передается на передние колеса, которые тащат за собой всю машину и служат для изменения направления движения (рис. 1.11).

Кстати, переднеприводной автомобиль более устойчив на дороге.

Рис.11 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.11.

Переднеприводной автомобиль

Полноприводные – автомобили, в которых крутящий момент передается и на передние, и на задние колеса одновременно (рис. 1.12).

Рис.12 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.12. Полноприводной автомобиль: а – с раздаточной коробкой; б – с полным приводом, подключаемым автоматически; в – с постоянным полным приводом

Классификация по габаритным размерам

В современной автомобильной промышленности различают шесть европейских классов в зависимости от габаритных размеров автомобиля. Классы обозначаются буквами латинского алфавита: A, B, C, D, E, S (или F) (рис. 1.13).

Рис.13 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 1.13. Классификация автомобилей по габаритным размерам

А – мини-класс. Характеризуется длиной не более 3,6 м и шириной до 1,6 м. Такие автомобили могут быть как трех-, так и пятидверными.

В – малый класс. Длина кузова – от 3,6 до 3,9 м, ширина – от 1,5 до 1,7 м.

С – низший средний класс (в народе – гольф-класс или компакт-класс). Длина таких машин – от 3,9 до 4,4 м, ширина – от 1,6 до 1,75 м.

D – средний класс. К этой категории относятся автомобили длиной от 4,4 до 4,7 м и шириной от 1,7 до 1,8 м.

Е – высший средний класс, или бизнескласс. Это кузова от 4,6 до 4,8 м в длину и более 1,7 м в ширину.

S (F) – класс люкс (представительский класс). Автомобили длиной свыше 4,8 м и шириной более 1,7 м.

2. Двигатель внутреннего сгорания (ДВС)

Общее устройство и работа ДВС

Почти на всех современных автомобилях в качестве силовой установки применяется двигатель внутреннего сгорания (ДВС) (рис. 2.1).

Существуют еще электромобили, но их мы рассматривать не будем.

Рис.14 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 2.1. Внешний вид двигателя внутреннего сгорания

В основе работы каждого ДВС лежит движение поршня в цилиндре под действием давления газов, которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.

При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку будет воздействовать огромное давление, которое будет двигать стенку.

ПРИМЕЧАНИЕ

В ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.

ДВС, используемые на легковых автомобилях, состоят из двух механизмов: кривошипношатунного и газораспределительного, а также из следующих систем:

♦ питания;

♦ выпуска отработавших газов;

♦ зажигания;

♦ охлаждения;

♦ смазки.

Основные детали ДВС:

♦ головка блока цилиндров;

♦ цилиндры;

♦ поршни;

♦ поршневые кольца;

♦ поршневые пальцы;

♦ шатуны;

♦ коленчатый вал;

♦ маховик;

♦ распределительный вал с кулачками;

♦ клапаны;

♦ свечи зажигания.

Большинство современных автомобилей малого и среднего класса оснащены четырехцилиндровыми двигателями. Существуют моторы и большего объема – с восьмью и даже двенадцатью цилиндрами (рис. 2.2). Чем больше объем двигателя, тем он мощнее и тем выше потребление топлива.

Рис.15 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 2.2. Схемы расположения цилиндров в двигателях различной компоновки:

а – четырехцилиндровые; б – шестицилиндровые; в – двенадцатицилиндровые (α – угол развала)

Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы – стакан, состоящий из головки и юбки (рис. 2.3). На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 2.4).

Рис.16 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 2.3. Поршень

Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз. Так тепловая энергия превращается в механическую.

Рис.17 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 2.4. Поршень с шатуном:

1 – шатун в сборе; 2 – крышка шатуна; 3 – вкладыш шатуна; 4 – гайка болта; 5 – болт крышки шатуна; 6 – шатун; 7 – втулка шатуна; 8 – стопорные кольца; 9 – палец поршня; 10 – поршень; 11 – маслосъемное кольцо; 12, 13 – компрессионные кольца

Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.5).

В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.

Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 2.3). Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис. 2.3). А расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня.

Рис.18 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 2.5. Коленчатый вал с маховиком:

1 – коленчатый вал; 2 – вкладыш шатунного подшипника; 3 – упорные полукольца; 4 – маховик; 5 – шайба болтов крепления маховика; 6 – вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 – вкладыш центрального (третьего) подшипника

Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ – это камера сгорания.

А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра.

В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ.

Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливо-воздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных – 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.

Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт.

Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливо-воздушной смеси.

В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 2.6), в дизельных – от сжатия.

Рис.19 Устройство автомобиля для сдающих экзамены в ГИБДД и начинающих водителей

Рис. 2.6. Свеча зажигания

При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется.

Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск – маховик (см. рис. 2.5). Когда двигатель работает, вал с маховиком вращаются.

А сейчас поговорим немного подробнее о работе одноцилиндрового двигателя.

Повторим, первое действие – попадание внутрь цилиндра (в пространство над поршнем) топливо-воздушной смеси, которую приготовил карбюратор или инжектор. Этот процесс называется тактом впуска (первый такт). Заполнение цилиндра двигателя топливо-воздушной смесью происходит, когда поршень из верхнего положения движется в нижнее. При этом к цилиндру двигателя подведены два канала: впускной и выпускной. Горючая смесь впускается через первый канал, а продукты ее сгорания выходят через второй. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: клапан – это подобие гвоздя с большой круглой шляпкой, перевернутый шляпкой вниз, которой закрывается вход из канала в цилиндр.

При этом шляпка прижимается к кромке канала мощной пружиной и закупоривает его.

Если нажать на клапан (тот самый гвоздь), преодолев сопротивление пружины, то вход в цилиндр из канала откроется (рис. 2.7).

Первый такт – впуск

Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной клапан цилиндр заполняется горючей смесью до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на пол-оборота.

Второй такт – сжатие

После того как топливо-воздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.

Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра (см. рис. 2.7). Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное пространство – камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °C.

Продолжить чтение