Читать онлайн Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать бесплатно

Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать

Редактор Любовь Сумм

Иллюстрации Олега Добровольского

Научные редакторы Александр Мельников, врач-терапевт, заведующий отделением сомнологии Национального медицинского исследовательского центра оториноларингологии ФМБА России, работал на вспышке COVID-19 в Климовском доме-интернате для инвалидов и престарелых, курировал организацию лечения в соответствии с мировыми практиками; Илья Ясный, канд. хим. наук, руководитель научной экспертизы фармацевтического венчурного фонда «Инбио Венчурс», редактор и автор сайта «Биомолекула»; Егор Воронин, вирусолог, PhD, главный операционный директор компании Worcester HIV Vaccine, USA, автор ЖЖ-блога о вирусологи shvarz

Издатель П. Подкосов

Руководитель проекта А. Казакова

Арт-директор Ю. Буга

Корректоры Е. Чудинова, С. Чупахина

Компьютерная верстка М. Поташкин, А. Фоминов

© Якутенко И., 2021

© Добровольский О., иллюстрации, 2021

© ООО «Альпина нон-фикшн», 2021

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

Посвящается моим дочерям, детство которых приходится на очень странное время

Вступление

Каждый год команда, издающая Оксфордский словарь, выбирает слово года. В 2020-м этим словом несомненно будет «коронавирус». Неожиданно выпрыгнув из китайских пещер, злобный родственник простуд за пару месяцев распространился по всей планете и вогнал половину мира в карантин, играючи обрушив казавшиеся такими надежными системы здравоохранения множества стран. Вместе с ними рухнули и наши представления о том, что благодаря мощи человеческого разума мы победили (ну хорошо, почти победили) все напасти, угрожающие нашим хрупким биологическим телам. Еще в конце 2019 года СМИ и разного рода эксперты убедительно рассуждали, что для полного торжества духа над плотью осталось лишь доразобраться с раком и, может, еще с болезнью Альцгеймера, биохакеры при помощи сложной химии пытались добавить себе лишних полтора месяца долголетия, а футурологи и трансгуманисты грезили о пересадке сознания в облачные серверы. В начале 2020-го оказалось, что человечество перешло в перманентный режим ЧС из-за банального инфекционного заболевания – точно так же, как в каком-нибудь XV веке.

На момент, когда я пишу эти слова, ни специфического лечения, ни вакцины от коронавируса нет. Невозможность повлиять на свою судьбу и будущее в целом вызывает ужасное беспокойство – неудивительно, что не только люди, далекие от медицины, но и врачи массово используют непроверенные средства и практики и верят то во множество гуляющих по сети рассказов о чудо-лекарстве, то убеждениям, что ковид не страшнее гриппа. В лучшем случае такое поведение оказывается бесполезным, в худшем – уносит человеческие жизни. Поэтому так важно говорить о коронавирусе именно сейчас, когда, казалось бы, ничего еще не ясно. Белых пятен пока предостаточно, более того, в полном соответствии с заветами древнегреческого философа Анаксимена, чем больше мы узнаем, тем больше понимаем, как много еще предстоит узнать. Несмотря на это, исследователи собрали о новом враге Homo sapiens небывалое количество информации. Эти сведения позволяют обычным людям минимизировать риски заболеть, а врачам – предупредить у пациентов наступление тяжелой фазы коронавирусной инфекции. Потому что – сошлюсь еще на одного философа, на этот раз из XVIII века, Клода Адриана Гельвеция – знание некоторых принципов возмещает незнание некоторых фактов.

В книге я постаралась максимально понятным языком, но без излишних упрощений и опираясь только на подтвержденные научные источники, изложить главные факты, которые уже удалось выяснить о коронавирусе: как он устроен, откуда взялся, как воздействует на наш организм и что можно сделать, чтобы защитить себя лично и общество в целом. Разумеется, мы поговорим о лечении и о вакцине.

Небольшие фрагменты книги появлялись в моем фейсбуке и телеграм-канале «Безвольные каменщики», но «Вирус, который сломал планету» – не сборник заметок о SARS-CoV-2, а попытка объединить и систематизировать более или менее устоявшиеся знания о нем. Я по максимуму убрала всю сиюминутность, оставив только те данные, которые уже не поменяются – или, по крайней мере, те, что отражают основные гипотезы и направления исследований. И хотя совершенно очевидно, что уже на момент выхода из печати в книгу можно будет многое дописать, я надеюсь, что глобально она не потеряет актуальности.

Будьте здоровы!

Глава 1.Что такое вирусы и почему они так опасны

Как очевидно из названия, коронавирус, вызвавший нынешнюю глобальную пандемию, является вирусом. Это не первое и не последнее вирусное заболевание, поставившее мир если не на грань катастрофы, то, по крайней мере, в очень сложные условия. Кроме того, в отличие от бактериальных инфекций, которые тоже бывают весьма неприятными, для большинства вирусных болезней не существует никаких лекарств (да-да, и от простуд тоже – что бы вам ни рассказывали фармацевты в аптеках, участковые терапевты и даже некоторые чиновники в Минздраве). Чем так необычны вирусы, что вся сверхмощная махина современной фармакологии не в состоянии противостоять им?

Вирусы – идеальные паразиты: у них редуцированы абсолютно все функции, кроме тех, которые необходимы для заражения и размножения. Пространство возможных действий урезано настолько, что вирусы считаются не совсем живыми: у них нет части свойств, характерных для живых объектов, например отсутствует метаболизм[1] в полном смысле этого слова. Строго говоря, вирус представляет собой белковую оболочку, внутри которой содержится молекула ДНК или РНК с записанной на ней вредоносной программой. Этакие нанороботы-зануды, умеющие только внедряться в клетки и копировать себя. Но сверхспециализация на паразитизме принесла свои плоды: в этом деле вирусам нет равных, и мы до сих пор очень плохо умеем справляться с последствиями вторжения в наш организм гадких крошечных созданий.

Жизненный цикл вируса состоит всего из трех стадий: 1) заражение клетки, 2) размножение, 3) выход из клетки и поиск новых клеток для заражения. Некоторые вирусы также умеют «вписывать» свой генетический материал в геном хозяина, чтобы гарантированно оставаться в клетках навсегда. Так поступают, к примеру, ретровирусы, самый известный представитель которых – вирус иммунодефицита человека (ВИЧ). Еще вариант – спрятаться в клетке до момента, когда размножение окажется максимально эффективным, скажем если организм носителя ослабнет и его иммунная система будет не в состоянии быстро подавить распространение вторженца. Этот трюк проделывает вирус герпеса. Но наш коронавирус – его официально называют SARS-CoV-2 – на такое, к счастью, не способен. Его геном не кодирует ферменты, которые могли бы встроить вирусный генетический материал в ДНК клетки-хозяина или маскировать длительное присутствие вируса. Тем более таких ферментов нет в геноме самой клетки. Так что опасения, что SARS-CoV-2 пропишется в ДНК переболевших навсегда, беспочвенны.

Хотя некоторые вирусы могут довольно долго оставаться инфекционными вне клетки-хозяина, размножаться они могут только внутри нее. Для того чтобы воспроизводиться с максимальной скоростью, вирусы оставили в своем геноме лишь самые необходимые гены – маленький геном быстрее копировать. Недостающую генетическую информацию и всю машинерию, которая требуется, чтобы получить необходимую для воспроизводства энергию, они воруют у клетки. Можно сказать, что вирусы взламывают ее геном, заставляя работать на себя. Точно так же поступают компьютерные вирусы, отсюда и их название.

Таким образом, клетка становится не только жертвой вируса, но и его главным убежищем. И для того, чтобы избавиться от вируса, организму приходится убивать собственные клетки. Не в последнюю очередь именно с этим связаны многие тяжелые последствия вирусных инфекций.

НЕГОВОРЯЩИЕ ИМЕНА

ВОЗ дала новой коронавирусной инфекции официальное название 11 февраля 2020 года. Если до этого момента ее называли 2019-nCov (от novel coronavirus, новый коронавирус), то теперь болезнь именуется COVID-19 (от coronavirus disease, коронавирусное заболевание). Если вам кажется, что ВОЗ как будто специально выбирает максимально блеклые и незапоминающиеся названия, то вам не кажется. Это делается умышленно – руководства Всемирной организации здравоохранения предписывают не упоминать в названии конкретные регионы, виды деятельности, животных, а также группы людей или отдельных лиц. Все для того, чтобы не допустить дискриминации или негативного отношения.

Эта идея основывается на нескольких недавних кейсах. Например, во время вспышки свиного гриппа 2009–2010 годов власти Египта, стремясь обезопасить население, уничтожили в стране всех свиней. При этом свиньи не были источником заразы для людей – просто один из новообразованных вирусов H1N1 скооперировался с вирусом гриппа свиней (то есть прихватил себе часть его генетического материала), стал особенно контагиозным и из-за этого убил довольно много народа. От распространения вируса такая мера не спасла, зато в Каире из-за нее случился мусорный кризис: в этом городе, скажем так, не очень хорошо обстоят дела с уборкой, и свиньи были ключевым звеном в переработке органических отходов. Ко всему прочему, истребление свиней ударило по живущим в Каире христианам, которые в основном и занимаются сортировкой и переработкой мусора. Без свиней они физически не могут справиться с горами объедков (если погуглить cairo garbage, результат вас впечатлит).

В 2012 году разразилась вспышка MERS – родственника нынешнего коронавируса. Первые случаи (и вообще значительная часть случаев) были зафиксированы в Саудовской Аравии, и потому сначала болезнь собирались назвать с привязкой к этой стране. Но власти Саудовской Аравии выступили категорически против, опасаясь, что ассоциация со смертельным вирусом скажется на доходах от туризма и в целом сократит число желающих взаимодействовать с государством и его гражданами. В итоге инфекцию назвали ближневосточным респираторным синдромом, что сегодня все равно рассматривается как ошибка, потому что Ближний Восток тоже регион.

Намучившись с этими историями (название MERS – Middle East Respiratory Syndrome – придумывали целых пять месяцев), а также под давлением нынешней страшно обидчивой на все общественности, ВОЗ приняла новые правила наименований инфекций. Они должны включать только описание симптомов (например, «респираторный» или «дефицит»), указание затронутых групп (детский, мужской и т. д.), характера течения заболевания (острый, хронический), сезонности и тяжести. Еще можно пользоваться сквозной нумерацией (1, 2, 3, I, II, III, альфа, бета). Так что больше никаких «испанок», птичьих гриппов, лихорадок Эбола, Западного Нила и Крым-Конго или «уханьского коронавируса» (ну просится же, правда?). Только скучные шифры из букв и цифр. Зато исключительно нейтрально.

Второе важнейшее свойство вирусов, помимо сверхвысокой скорости размножения (ученые также говорят «репликации»), – повышенная склонность мутировать. Слово «мутация» сегодня окутано, так сказать, зловещим ореолом тайны, но на самом деле этим термином называют любое изменение в геноме вируса – и не только вируса, а, в принципе, любого обладателя генома. Мутации происходят по разным причинам: это может быть результат ошибки в работе фермента, копирующего генетическую информацию, или повреждения нуклеиновых кислот, например ультрафиолетом, рентгеном или особыми веществами-мутагенами. Наконец, мутации могут происходить сами по себе из-за естественного изменения нуклеотидов – «букв», из которых составлен геном.

Чаще всего мутации вредны, так как они изменяют, а то и вовсе делают нечитаемыми записанные в нуклеиновых кислотах «слова»-гены – вспомним заходеровских кита и кота. Но иногда мутации не меняют смысл генетического текста. Так происходит, если в результате замены буквы слово не меняет своего значения. Если перейти от текстовых метафор к реальной жизни, то появление нейтральных мутаций обусловлено двумя механизмами. Чтобы понять их, необходимо вспомнить азы биологии. Основные молекулы, которые обеспечивают все функции живых систем (или частично живых, вроде вирусов), – это белки. Белки – длинные молекулы, составленные из 20 базовых единиц-аминокислот. Последовательности всех белков в зашифрованном виде записаны на молекулах ДНК и РНК – смотря из чего состоит геном конкретного существа. Каждая аминокислота кодируется тремя нуклеотидами – единицами нуклеиновых кислот.

При этом генетический шифр, он же код, избыточен: одну и ту же аминокислоту могут кодировать разные тройки нуклеотидов. И это первая причина, по которой мутации зачастую никак не влияют на работу живых систем, если тройка, получившаяся после изменения, соответствует той же аминокислоте, что исходные три кодирующих нуклеотида. Другой способ получить нейтральную мутацию – изменить аминокислоту так, чтобы новообразованный белок сохранил свои функции. Так происходит, например, если мутация меняет аминокислоту где-нибудь на периферии белка и его работоспособность остается такой же или почти такой же. Если сравнить белок с автомобилем, то такая нейтральная мутация меняет, скажем, цвет кузова или форму фар.

Иногда свойства белка меняются так, что его новые функции приносят живому существу или вирусу ощутимую выгоду. Например, если вирусу для проникновения в клетку необходимо ухватиться за какой-нибудь вырост на ее поверхности, полезной окажется мутация, которая повышает его «липучесть», например за счет того, что «хватающий» вирусный белок прочнее цепляется за торчащий белок клетки.

Способствовать появлению исключительно полезных мутаций вирусы – как и любые другие существа – не могут. Мутация – всегда случайность, так что она может оказаться как выгодной, так и вредной или нейтральной. Но если в некоем организме мутации происходят очень часто, вероятность появления «правильных» мутаций за тот же отрезок времени возрастает (правда, не для этого конкретного организма, а для вида в целом). Для мутирующего частота появлений полезных, вредных и нейтральных мутаций остается неизменной, но так как в целом изменений оказывается намного больше, увеличиваются и шансы возникновения «правильных» мутаций. Вирусы могут увеличивать свою мутагенность[2] разными способами – например, фермент РНК- или ДНК-полимераза, который копирует их геномы, часто работает халтурно, допуская намного больше ошибок, чем, скажем, ферменты человека или лошади. Кроме того, геном многих вирусов не обязательно записан в стабильной двуцепочечной молекуле ДНК, как у всех остальных живых организмов. Вирусы могут хранить свою наследственную информацию в одноцепочечной ДНК или даже в РНК. Эти молекулы куда менее стабильны, и изменения в них происходят гораздо чаще, чем в ДНК. Особенно склонна к переменам РНК: некоторые РНК-содержащие вирусы мутируют в миллион(!) раз быстрее, чем их хозяева{1}. Такие рекордсмены по мутациям балансируют на грани допустимого: если еще немного увеличить скорость изменений, вирус погибнет, так как с огромной вероятностью за несколько циклов размножения мутации выведут из строя его ключевые ферменты. Мутационной дерзостью РНК-содержащих вирусов пользуются ученые, разрабатывающие средства борьбы с ними (мы подробнее поговорим об этом в разделе, посвященном лекарствам против коронавируса). Как вы уже догадались, его геном записан именно в молекуле РНК.

Счастливчики, которым достались полезные мутации, имеют больше шансов заразить новых хозяев и размножиться. Этот процесс – преимущественное выживание организмов, которые оказались более приспособленными к текущим условиям, – лежит в основе эволюции. И благодаря тому, что вирусы мутируют очень быстро – на порядки быстрее других организмов, – их эволюция также происходит стремительно. Скажем, еще вчера вирус умел размножаться только в летучих мышах, а уже сегодня хоп! – и научился проникать в клетки человека и реплицироваться в них (в реальности речь идет о более долгих сроках, но общий смысл таков).

Сочетание двух этих качеств – стремительного размножения и столь же стремительного мутирования – обеспечивает вирусам эволюционное процветание и звание лучших паразитов всех времен и народов. Благодаря первому инфекция развивается очень быстро, второе позволяет уходить от иммунного ответа и завоевывать новых хозяев. Да, бактерии тоже умеют быстро делиться и меняться, но от вирусов они отстают, условно говоря, на целую голову (если бы у кого-нибудь из них была голова). Ко всему прочему, до бактерий проще добраться, так как они не сидят внутри клеток.

Рис.0 Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать

Рис. 1. Множество вирусов есть у всех групп живых существ на планете – и даже у самих вирусов

Доказательство фантастической успешности вирусов – их зашкаливающее количество. И хотя точно подсчитать, сколько именно вирусов на планете, невозможно, согласно некоторым прикидочным оценкам{2}, только в океане примерно четыре нониллиона вирусов. Нониллион – это единица с 30 нулями. Представить настолько гигантское число очень трудно, но, например, наше Солнце весит два нониллиона килограммов. Обитают вирусы, разумеется, не сами по себе, а внутри живых организмов: на планете нет существ, которые не были бы освоены вирусами. Звери, птицы, растения, грибы, бактерии – и даже сами вирусы: у всех них есть множество собственных вирусов, вызывающих всевозможные патологии. Некоторые вирусы строго специфичны и поражают только один вид, другие не столь разборчивы и могут перескакивать с хозяина на хозяина, приводя к появлению новых болезней. Именно так произошло с SARS-CoV-2.

Глава 2. Как устроен коронавирус

Строение

Как мы выяснили в предыдущей главе, вирусы завоевали мир благодаря высокой скорости размножения и повышенной мутагенности. При этом, если главные конкуренты вирусов за планетарное господство – люди – осваивают новые территории при помощи разнообразных сложных технологических устройств, вирусы, наоборот, достигают своей цели за счет предельного упрощения, правда очень затейливого. Все до единого вирусные гены работают только на одну задачу – заселить как можно больше клеток и синтезировать максимально возможное количество вирусных частиц, которые, в свою очередь, будут инфицировать всё новые и новые клетки. Самые маленькие геномы у РНК-содержащих вирусов: рекордсмены минимизации вроде вируса гепатита D обходятся всего 1700 нуклеотидами (генетическими буквами). Для сравнения: в геноме человека больше 3 млрд пар нуклеотидов.

Геном коронавирусов тоже записан в молекуле РНК, однако они самые крупные представители этой группы: в среднем у них около 29 000 нуклеотидов. В геномной РНК SARS-CoV-2 29 900 нуклеотидов, и они кодируют 16 генов. Часть из них – гены, обеспечивающие синтез собственных белков вируса, остальные нужны для того, чтобы хакнуть геном клетки, заставив ее работать в режиме вирусной фабрики, а также для обмана клеточных защитных систем. Все эти «хитрые» гены и белки возникли в результате длительного сосуществования коронавирусов и их хозяев: каждая новая придумка паразита, облегчающая его проникновение в клетку или размножение, повышала шансы именно этой вирусной разновидности остаться в ходе эволюции. В результате такой позиционной войны виновник нынешней пандемии получился весьма хитроумным и коварным.

Рис.1 Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать

Рис. 2. Частица SARS-CoV-2 – ограниченная липидной мембраной сфера размером около 95 нм без учета торчащих наружу тримеров спайк-белка и 120–130 нм с ними. Внутри компактно упакована геномная РНК, намотанная на каркас из N-белка – в реальной вирусной частице она занимает внутреннее пространство почти целиком. SARS-CoV-2 не слишком похож на другие человеческие коронавирусы – геном ближайшего родственника SARS отличается на целых 20 %. Зато с одним из коронавирусов летучих мышей RaTG13 он схож на 96 %. Не исключено, что ученым удастся найти в рукокрылых еще более близкие вирусы, от которых мог произойти SARS-CoV-2

Хотя на первый взгляд так не скажешь. С виду SARS-CoV-2 устроен точно так же, как и множество других вирусов. Это сферическая частица со средним диаметром около 120 нанометров, покрытая многочисленными выростами. Утверждается, что благодаря им коронавирусы выглядят как маленькие короны (отсюда и название), но вообще-то куда больше они напоминают морскую мину – да и по смыслу морская мина ближе[3]. Крупные выросты образованы так называемым шиповидным белком, он же спайк-белок, или S-белок (от английского spike – шип). С его помощью коронавирус цепляется за клеточные белки-рецепторы, которые выступают далеко за поверхность клетки. Выросты помельче – это структурный M-белок (от английского membrane protein, мембранный белок). Есть еще E-белок (от английского envelope protein, белок оболочки), который почти совсем не выдается за пределы сферы. M-, S- и E-белки погружены в липидную (жировую) мембрану, которая отделяет внутренность вирусной частицы от окружающей среды. То есть фактически вирус – это пузырек, стенка которого образована липидными молекулами с вкраплениями белков. Причем мембрана у вируса не своя, а позаимствованная у предыдущего хозяина: синтез липидов – сложный многостадийный процесс, требующий множества ферментов, генов которых у паразита нет. Внутри пузырька находится вирусная РНК, намотанная на каркас из N-белка (от английского nucleocapsid protein, белок нуклеокапсида). И это всё.

Проникновение

Несмотря на такую аскетичность, вирусная частица SARS-CoV-2 имеет все необходимое, чтобы весьма эффективно проникать в клетки организма-хозяина. Главными воротами, через которые вирус попадает внутрь, являются рецепторы ACE2, или, по-русски, АПФ2, что расшифровывается как ангиотензин-превращающий фермент 2. Вместе с ангиотензин-превращающим ферментом 1 (АПФ1, или ACE) ACE2 входит в так называемую ренин-ангиотензиновую систему, которая регулирует кровяное давление. Никакого глобального смысла в том, что вирус цепляется именно за ферменты системы, ответственной за давление, нет: скорее всего, ACE2 стал мишенью вируса случайно в ходе многочисленных циклов адаптации паразита к клеткам хозяина.

Рецепторы ACE2 – трансмембранные белки[4], то есть они погружены в наружную клеточную мембрану, которая отграничивает клетки животных от окружающей среды. Они есть на клетках дыхательных путей, тонкого кишечника, стенок сосудов (эндотелия), яичек и некоторых других[5]. Это теоретически означает, что SARS-CoV-2 может проникать во все эти органы, и действительно, было установлено, что вирус умеет внедряться, например, в клетки кишечника и яичек. Но эти локации вирусу по каким-то причинам не нравятся: если он и размножается там, то не слишком активно, не вызывая развития серьезных патологических процессов. А вот в клетках дыхательных путей, и особенно в клетках легких, SARS-CoV-2 разворачивает бурную деятельность.

Коронавирус цепляется за выступающий над поверхностью клеток ACE2 при помощи своего S-белка. В связывании участвует не весь белок, а его наружная расширенная часть – ее называют S1-фрагментом. Непосредственно с рецептором взаимодействует RBD-участок (receptor binding domain – домен, ответственный за связывание с рецептором), который очень точно прилегает к ACE2, повторяя все его выемки и впадины. Ученые любят называть такое точное присоединение взаимодействием типа ключ – замок.

АЛЬТЕРНАТИВНЫЙ ПУТЬ

ACE2 – не единственный рецептор, прилипнув к которому SARS-CoV-2 может проникнуть в клетки. В марте 2020 года ученые обнаружили{3}, что этот коронавирус умеет цепляться за рецепторы CD147. Но вот загвоздка: CD147 почти не встречаются на поверхности клеток дыхательных путей. Зато этих рецепторов много на иммунных клетках, в некоторые из которых, как было показано группой исследователей из Китая и США{4}, вирус может проникать. Пока до конца не ясно, использует ли он при этом CD147 или, может быть, какой-то третий тип рецепторов. Но сама возможность вторжения коронавируса в иммунные клетки вызывает настороженность, потому что именно разбаланс иммунного ответа является основной причиной смерти от SARS-CoV-2. Впрочем, похоже, что проникновение в иммунные клетки – необязательный и уж точно не основной механизм патогенеза вируса. О том, как именно SARS-CoV-2 влияет на иммунитет, мы подробнее поговорим в главе «Что коронавирус делает с нами».

Самого по себе связывания с ACE2 уже достаточно для проникновения. Разумеется, не каждая вирусная частица, зацепившаяся за рецептор, сумеет попасть внутрь клетки, однако при существенном количестве вируса довольно у многих это получится. Но коварные вирусы придумали[6] дополнительный механизм, радикально увеличивающий шансы на проникновение: они используют сидящие в мембране протеазы[7] – ферменты, расщепляющие белки. Такие протеазы чрезвычайно важны для клетки, так как очень многие белки изначально синтезируются в виде полуфабрикатов – длинных аминокислотных цепей. Для того чтобы перевести такие заготовки в рабочую форму, их нужно разрезать в одном или нескольких местах – иногда чтобы откусить лишний хвостик, иногда потому, что свернуться в молекулы правильной формы могут только короткие цепочки. Множество таких протеаз находится в мембране большой внутриклеточной фабрики всевозможных полезных веществ под названием аппарат Гольджи. Но некоторые выносятся на внешнюю мембрану, вероятно для того, чтобы завершить процесс производства белков, которые активны на поверхности клетки или выделяются вовне, например, разнообразных сигнальных молекул. Еще часть протеаз оказывается на внешней мембране как побочный продукт внутриклеточной логистики – ферменты попадают туда в пузырьках с разными экспортными белками, регулярно поставляемыми из аппарата Гольджи.

Протеазе все равно что расщеплять, лишь бы у белка была определенная последовательность, которую она узнаёт и режет. Хитрый коронавирус обзавелся сразу несколькими такими последовательностями в своем спайк-белке. После того как SARS-CoV-2 связывается с клеточным рецептором, он «подставляет» эти последовательности протеазам – и те простодушно расщепляют S-белок в нужных местах. Как предполагается, после этого конформация (форма) образовавшихся кусочков изменяется таким образом, что вся вирусная частица подтаскивается максимально близко к поверхности клетки и коронавирусу остается только слить свою мембрану с клеточной – точно так же, как сливаются вместе две капли масла, плавающие на воде. По другой гипотезе, вирус попадает внутрь клетки путем эндоцитоза, то есть как бы проваливается в выпячивающийся внутрь клетки мембранный пузырек{5}. Но как бы то ни было, содержимое вирусной частицы оказывается внутри клетки.

Использовать клеточные протеазы для проникновения внутрь умеют многие вирусы: например, злобный родственник нынешнего коронавируса SARS (вирус, вызвавший вспышку атипичной пневмонии в 2002–2004 годах) эксплуатировал протеазу под названием TMPRSS2. Но SARS-CoV-2 не ограничился одной протеазой. В его спайк-белке вдобавок к последовательности, узнаваемой TMPRSS2, есть фрагмент, который расщепляет клеточная протеаза фурин. Предполагается, что готовность «работать» сразу с двумя протеазами делает нынешний коронавирус намного более заразным, чем его предшественник: если почему-либо TMPRSS2 окажется недоступна, он всегда сможет воспользоваться альтернативной протеазой{6}. Более того, благодаря использованию протеаз SARS-CoV-2 скрывается от иммунной системы. Важнейшая часть вирусной оболочки, на которую реагируют различные иммунные компоненты, в том числе антитела, – RBD-фрагмент. До того как какая-нибудь из протеаз расщепит спайк-белок, этот кусочек находится в «лежачей» конформации и практически не выдается наружу. После взаимодействия с протеазой RBD-фрагмент поднимается над поверхностью и его можно легко обнаружить, но в этот момент вирус уже сливается с клеточной мембраной, и, для того чтобы его обезвредить, необходимо привлекать другие рода иммунных войск{7}.

НЕВОЛЬНЫЙ ПОМОЩНИК

Различные протеазы используют в своих целях многие вирусы. Фурин печально знаменит тем, что сотрудничает с особо неприятными из них. Сайт (специфический участок) для расщепления фурином есть, например, у высокопатогенных штаммов птичьего гриппа. Его несет находящийся на поверхности вирусной частицы белок гемагглютинин. После того как сидящий на внешней мембране клетки фурин разрежет гемагглютинин на две субъединицы, на одной из них формируется участок, облегчающий слипание вирусной и клеточной мембран. Еще раз вирус птичьего гриппа использует фурин для того, чтобы более эффективно выпускать наружу новосинтезированные вирусные частицы – в этом случае работа пептидазы облегчает слияние вирусной и клеточной мембран изнутри клетки. Помогает фурин и вирусу иммунодефицита человека (ВИЧ): один из белков его оболочки синтезируется в виде полуфабриката и нуждается в разрезании фурином. Белки флавивирусов, к которым относятся возбудители таких опасных болезней, как энцефалит, желтая лихорадка или лихорадка денге, также расщепляются фурином в процессе сборки вирусных частиц.

Удобную протеазу научились использовать не только вирусы: многие бактерии с ее помощью активируют свои токсины. Фурин расщепляет на две субъединицы А и В токсин дифтерийной палочки, после чего субъединица А отправляется в ядро и тормозит процессы, необходимые для синтеза клеточных белков (сам синтез белков идет в цитоплазме, но для его регуляции необходима работа определенных ядерных генов). После того как фурин разрежет на три части токсин сибирской язвы, структурная часть получившихся кусочков формирует канал, через который ядовитые фрагменты проникают в цитоплазму{8}.

Казалось бы, такой вредный для клетки белок должен исчезнуть под давлением отбора, но увы, фурин и другие протеазы играют важнейшую роль в работе клеток и развитии эмбрионов, поэтому животным приходится носить в себе такую мину. По этой же причине – из-за участия фурина во множестве физиологических процессов – его вряд ли получится использовать как мишень для потенциального лекарства от COVID-19, хотя в экспериментах на культурах клеток и показано, что его блокировка уменьшает инфекционность SARS-CoV-2. Предыдущие попытки применить ингибиторы фурина (вещества, которые «выключают» его) для лечения других заболеваний показали, что такой подход дает множество побочных эффектов{9}{10}.

Размножение

Попасть внутрь клетки – половина дела. Цель вируса – создать как можно больше собственных копий, которые смогут распространиться и заразить другие клетки. Для этого необходимо синтезировать тысячи новых молекул РНК{11} для загрузки в вирусные частицы, а также все необходимые белки. Своих ресурсов для этого у коронавируса нет, зато есть инструменты, при помощи которых он может заставить клетку выполнить требуемые задачи. Эти инструменты – особые белки, которые переключают клетку из нормального режима работы в режим пособничества вирусу. Информация об аминокислотной последовательности таких хакерских белков закодирована в вирусной геномной молекуле РНК, причем это сделано крайне изобретательно. Чтобы впихнуть все необходимые данные в относительно небольшой геном, коронавирус (и не он один) использует хитрую комбинаторику. Его гены не записаны в молекуле РНК один за другим: они расположены внахлест – то есть перекрываются. Благодаря такому сжатию в одной и той же РНК умещается информация о большем количестве белков, чем если бы гены шли подряд. Если вы готовы немного погрузиться в биологию, чтобы разобраться, как именно вирусы извлекают информацию из перекрывающихся генов, читайте врезку ниже. Если нет – пропустите ее и переходите к следующему абзацу.

СДВИНУТЬ И РАЗРЕЗАТЬ

Заложенную в молекуле РНК информацию считывает клеточная молекулярная машина рибосома. Она выглядит как округлая коробочка с длинной щелью, сквозь которую протягивается нить РНК. В активной рабочей зоне щели в каждый момент времени находятся три нуклеотида – буквы генетического кода. Как вы помните из главы 1, каждая такая тройка кодирует одну аминокислоту – базовую единицу белка. Вокруг рибосомы в цитоплазме плавают все 20 аминокислот, которые переносит специальный транспорт – особым образом свернутые маленькие молекулы РНК. Их называют тРНК, и каждой аминокислоте соответствует строго определенная тРНК. Аминокислоты на своем транспорте могут заплывать в щель рибосомы. Если оказавшаяся там аминокислота «правильная», то есть кодируется именно той тройкой нуклеотидов, которые в этот момент сидят в центре щели, тРНК «прилипнет» к ним и рибосома присоединит переносимую этой тРНК аминокислоту к растущей белковой цепи. После этого рибосома сдвинется по молекуле РНК на три нуклеотида и процесс будет повторяться до момента, пока машинка по синтезу белка не наткнется на стоп-кодон – определенную тройку нуклеотидов, на которых она отвалится от РНК.

Для того чтобы рибосома могла синтезировать с одной РНК несколько белков, вирусы используют хитрый трюк. Недалеко от стоп-кодона последовательность их РНК устроена таким образом, что легко закручивается в петлю. Рибосома умеет расплетать такие структуры, но на это ей требуется время. Петля только часть ловушки. Непосредственно перед ней находится особый участок РНК, который называют скользким. Он состоит из идущих подряд одинаковых букв, и, когда рибосома разбирается с петлей, она может случайно сдвинуться на одну букву, не заметив этого. Раскрутив петлю, рибосома продолжит синтез белка, но его последовательность окажется измененной, так как все следующие тройки нуклеотидов тоже будут сдвинуты на одну букву. В случае SARS-CoV-2 именно так синтезируются белковые цепи ORF1a и ORF1b (см. рис. 3). ORF1a рибосома строит как положено – от начала цепи до стоп-кодона. ORF1b получается, когда она запинается на расположенной ближе к концу ORF1a петле, перескакивает на одну букву и доделывает цепь до стоп-кодона в конце ORF1b. Таким образом, после нескольких циклов синтеза в клетке оказываются более короткие цепи ORF1a и длинная цепь ORF1ab, которая почти целиком включает ORF1a – кроме нескольких последних нуклеотидов, на которых рибосома соскользнула, – и всю цепь ORF1b.

Рис.2 Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать

Рис. 3. Благодаря различным приемам сжатия контента в относительно небольшом геноме SARS-CoV-2 закодировано очень много информации. Попав в клетку, вирус первым делом подставляет рибосомам левую часть своей РНК. Они синтезируют с нее две длинные полипептидные цепочки ORF1a и ORF1b, причем часть последовательности ORF1b находится внутри ORF1a, но сдвинута на несколько нуклеотидов. Оставшиеся белки синтезируются с другого конца геномной РНК (так называемый 3’-конец) по одному – то есть для каждого из них РНК-зависимая РНК-полимераза сначала создает отдельную мРНК, на основе которой рибосома строит белок. Полимераза начинает считывать информацию с 3’-конца, доходит до одной из последовательностей TRS-B, пробуксовывает на них и либо сразу перепрыгивает на участок TRS-L, где заканчивает синтез, либо считывает информацию дальше – до следующего участка TRS-B.

UTR – untranslated region, нетранслируемые области, «сервисные» участки РНК. Белки их не синтезируются, но эти регионы необходимы для регуляции процесса.

PolyA – поли(А)-хвост, участок РНК, составленный только из аденина. Необходим для регуляции жизненного цикла молекулы РНК

Сначала с вирусной РНК клеточными рибосомами синтезируются две длинные белковые цепи ORF1a и ORF1ab (см. рис. 3), причем вторая половина длинной цепи оказывается сдвинута относительно первой из-за того, что рибосома поскальзывается на особой последовательности и продолжает синтез уже с нового места. Эти цепи разрезаются на отдельные белки, которые выполняют две задачи: 1) обеспечить бесперебойный синтез всех компонентов вирусных частиц и 2) не дать клетке-хозяину сообщить иммунной системе, что произошло заражение. Разрезает ORF1a и ORF1ab находящаяся в них же вирусная протеаза. После того как зараженная клетка порабощена, синтезированный с вирусной РНК фермент со сложным названием РНК-зависимая РНК-полимераза считывает со второй половины той же РНК оставшиеся гены – это в основном гены структурных белков, необходимых для сборки вирусных частиц. И уже на основе образовавшихся коротких молекул РНК рибосомы строят вирусные белки. Синтезировать белки непосредственно с исходной вирусной РНК нельзя: их последовательности как бы накладываются друг на друга (здесь вирус тоже использует сжатие информации), поэтому ген каждого белка нужно получить в виде отдельной молекулы РНК. Сложное объяснение – во врезке, его опять же можно пропустить.

ГЕНОМНЫЕ ПРЫЖКИ

В случае с синтезом коротких РНК SARS-CoV-2 механизм получения множества молекул с одной матрицы иной. РНК-зависимая РНК-полимераза начинает считывать информацию с «правого» конца большой вирусной РНК (см. рис. 3). В какой-то момент она доходит до особой последовательности TRS (transcription-regulating sequence – последовательность, регулирующая транскрипцию, то есть синтез РНК) и пробуксовывает на ней из-за особой структуры TRS. Дальше полимераза либо продолжает считывать информацию до следующей TRS, либо перепрыгивает сразу на «левый» концевой участок, где особый сигнал заставляет ее прекратить работу. Прыжок или продолжение – вероятностные процессы, и после нескольких циклов в цитоплазме нарабатываются РНК всех генов второй половины исходной РНК.

Полный список белков коронавируса SARS-CoV-2 и их функции описаны в таблице 1. Аббревиатурой nsp обозначают неструктурные белки (от английского non-structural proteins). К ним относятся сервисные белки вируса вроде РНК-зависимой РНК-полимеразы и белков, обеспечивающих сборку вирусных частиц, а также nsp, выключающие собственный метаболизм клетки и мешающие ей позвать на помощь иммунную систему. Остальные белки составляют каркас вирусной частицы.

Рис.3 Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать
Рис.4 Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать
Рис.5 Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать

В геноме SARS-CoV-2 видны еще три последовательности, с которых, теоретически, могли бы считываться белки – ORF9c, ORF10 и ORF14. Но действительно ли они «работают», или это просто артефакт – неизвестно.

[I] M.-P. Egloff et al., “The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world,” Proc. Natl. Acad. Sci., vol. 101, no. 11, pp. 3792–3796, Mar. 2004.

[II] Y. Wang et al., “Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis,” J. Virol., vol. 89, no. 16, pp. 8416 LP-8427, Aug. 2015.

[III] Там же.

[IV] V. D. Menachery, K. Debbink, and R. S. Baric, “Coronavirus non-structural protein 16: Evasion, attenuation, and possible treatments,” Virus Res., vol. 194, pp. 191–199, Dec. 2014.

[V] K. Siu et al., “Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC,” FASEB J., vol. 33, no. 8, pp. 8865–8877, Aug. 2019.

[VI] Y. Konno et al., “SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant,” bioRxiv, p. 2020.05.11.088179, Jan. 2020.

[VII] D. Schoeman and B. C. Fielding, “Coronavirus envelope protein: current knowledge,” Virol. J., vol. 16, no. 1, p. 69, Dec. 2019.

[VIII] “UniProtKB – P59637 (VEMP_CVHSA). Envelope small membrane protein,” UniProt. [Online]. Available: https://www.uniprot.org/uniprot/P59637. [Accessed: 14-Aug-2020].

[XI] M. Frieman, B. Yount, M. Heise, S. A. Kopecky-Bromberg, P. Palese, and R. S. Baric, “Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane,” J. Virol., vol. 81, no. 18, pp. 9812–9824, Sep. 2007.

[X] J. K. Taylor et al., “Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference,” J. Virol., vol. 89, no. 23, pp. 11820–11833, Dec. 2015.

[XI] S. R. Schaecher and A. Pekosz, “SARS Coronavirus Accessory Gene Expression and Function,” in Molecular Biology of the SARS-Coronavirus, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 153–166.

[XII] C.-S. Shi et al., “SARS-Coronavirus Open Reading Frame-9b Suppresses Innate Immunity by Targeting Mitochondria and the MAVS/TRAF3/TRAF6 Signalosome,” J. Immunol., vol. 193, no. 6, pp. 3080–3089, Sep. 2014.

[XIII] C.-S. Shi, N. R. Nabar, N.-N. Huang, and J. H. Kehrl, “SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes,” Cell Death Discov., vol. 5, no. 1, p. 101, Dec. 2019.

Глядя на таблицу 1, можно подумать, что мы уже очень много знаем о белках SARS-CoV-2. На самом деле это не так. Большинство представленных здесь сведений получены учеными, исследовавшими вирус SARS. Геномные последовательности SARS и SARS-CoV-2 сходны на 79 %{12}, и большинство белков практически неотличимы друг от друга. Но очевидно, с каждым месяцем исследователи будут лучше разбираться в подрывной деятельности нового коронавируса. Так, предварительный анализ взаимодействия белков SARS-CoV-2 с белками клетки показал, что даже безобидные структурные белки теоретически могут вмешиваться в те или иные иммунные процессы{13}. Чем лучше мы будем понимать, как именно коронавирус воздействует на организм, тем больше у нас будет потенциальных слабых мест, на которые можно нацеливать лекарства.

Об одном белке нового коронавируса нужно упомянуть отдельно. Это nsp14 – фермент, умеющий исправлять ошибки, допущенные при копировании вирусных РНК. В первой главе мы говорили, что РНК-содержащие вирусы отличаются повышенной склонностью мутировать. Одна из причин – помимо нестабильности самой молекулы РНК – это крайне неряшливая работа РНК-зависимой РНК-полимеразы, фермента, который синтезирует новые копии вирусной РНК. По сравнению, например, с ДНК-полимеразами, которые копируют молекулы ДНК, она допускает колоссально много ошибок[8]. Так много, что это угрожает выживанию вируса: если не исправлять их, очень быстро последовательность изменится настолько, что на ее основе нельзя будет синтезировать ни одного работающего белка. Поэтому коронавирусы обзавелись ферментом-пруфридером (от английского proofreading, то есть правка текста корректором, в ходе которой он исправляет ошибки). Он «видит» неправильно вставленные РНК-полимеразой нуклеотиды и вырезает их. После этого полимераза вновь пытается вставить в это место нуклеотид – и так как ошибается она, все же, не каждый раз, со второй попытки опечатка часто исчезает. Впервые исправляющий ошибки белок обнаружили у SARS, и, похоже, это уникальная придумка именно коронавирусов. По крайней мере, ни у каких других РНК-вирусов такого фермента не найдено.

МОЛЕКУЛЯРНЫЙ ДИВЕРСАНТ

Успех SARS-CoV-2 во многом связан с его способностью обманывать клеточные противовирусные механизмы. Этим занимаются минимум девять вирусных белков (см. табл. 1). Часть из них мешают клетке синтезировать интерфероны, часть маскируют вирусные РНК так, чтобы они стали неотличимы от клеточных, часть уничтожают следы деятельности вируса (двуцепочечные РНК), которые выдают его специальным белкам-«охранникам». Некоторые из этих механизмов были у SARS и MERS, но один является абсолютным эксклюзивом нынешнего коронавируса: последовательность ORF8 кодирует белок, который не дает клетке выставлять на поверхности фрагменты собственных белков{14}. Такая самопрезентация – чрезвычайно важный механизм, позволяющий иммунной системе вовремя заметить и уничтожить подозрительные клетки, неважно, завелся в них вирус или они мутировали и готовятся стать раковыми. Каждая клетка нашего организма – как и организмов всех позвоночных животных – в обязательном порядке отчитывается перед клетками иммунной системы с неприятным названием Т-киллеры (или цитотоксические Т-лимфоциты). Для этого клетка разрезает небольшой процент всех белков, которые обнаружит у себя в цитоплазме, на небольшие кусочки и выставляет их на поверхность на особых белках MHC I (major histocompatibility complex class I, белки главного комплекса гистосовместимости класса I). Т-киллеры регулярно наведываются к MHC I, и, если какой-нибудь из выложенных фрагментов покажется им неправильным (то есть совпадет с чужеродным белковым мотивом, на который настроен каждый Т-киллер), клетку немедленно убивают. ORF8 мешает клетке производить MHC I, направляя свежесинтезированные белки главного комплекса гистосовместимости класса I в лизосомы – заполненные «едкими» ферментами пузырьки, в которых клетка уничтожает всякий мусор. Уменьшая количество MHC I, SARS-CoV-2 минимизирует шансы, что какой-нибудь из них подцепит и выставит на обозрение Т-киллерам фрагмент вирусного белка.

Похожими трюками балуются и другие неприятные вирусы, например ВИЧ и аденовирус. И хотя клетки с подозрительно малым количеством MHC I на поверхности тоже уничтожаются иммунной системой, но, пока она заметит, что белков не хватает, пройдет достаточно много времени и вирус успеет как следует размножиться. Отчасти с этим связана высокая патогенность SARS-CoV-2: раз попав в организм, он с ходу обманывает иммунную систему и выигрывает критические первые часы, пока вирусных частиц еще мало и иммунитет мог бы задавить инфекцию в зародыше.

Выход из клетки

Новые вирусные частицы собираются не просто в цитоплазме: SARS-CoV-2 организует фабрику по их производству в особом отделе клетки – эндоплазматическом ретикулуме. Это огромный лабиринт, стенки которого сделаны из той же мембраны, что и клеточная оболочка. В эндоплазматическом ретикулуме клетка синтезирует часть белков и снабжает их особыми метками-«пропусками», направляющими эти белки в разные клеточные «департаменты». В том числе упакованные в мембранные пузырьки экспортные белки отправляются во внешнюю среду. Ферменты вируса приостанавливают синтез собственных клеточных белков и оккупируют эндоплазматический ретикулум. Свежесинтезированные структурные белки SARS-CoV-2 встраиваются в мембранные пузырьки, внутрь загружается намотанная на N-белок вирусная РНК – и новая вирусная частица готова. Множество вирусов набиваются в большой мембранный пузырек – такой же, в который в норме клетка упаковывает свои «экспортные» белки, – и плывут к наружной мембране. Пузырек сливается с ней, и паразиты выходят в межклеточное пространство искать новых жертв. Жизненный цикл коронавируса повторяется.

Рис.6 Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать

Рис. 4. После того как спайк-белок вируса связывается с рецепторами ACE2 (1), клеточная протеаза фурин или TMPRSS2 разрезает спайк (не показано на рисунке) и вся частица подтягивается ближе к поверхности клетки. Изначально предполагалось, что после этого ее мембрана сливается с клеточной ((2), верхняя стрелка), но позже появились данные, что вирус попадает внутрь клетки путем эндоцитоза ((2), нижняя стрелка). Оказавшись в клетке, вирус выпускает наружу свою геномную РНК, которая выходит из эндосомного пузырька в цитоплазму, где клеточные рибосомы начинают синтезировать с нее длинную полипептидную цепь (3). Один из входящих в нее белков – протеаза, и она разрезает цепь на отдельные белки (4). В том числе протеаза высвобождает РНК-зависимую РНК-полимеразу, которая немедленно начинает синтезировать новые копии вирусной геномной РНК (5.а) и оставшиеся вирусные сервисные и структурные белки (5.б). Последние отправляются в эндоплазматический ретикулум, где происходит сборка новых вирусных частиц (6). Она продолжается в аппарате Гольджи, а затем в заготовки будущих вирусов загружается геномная РНК и уплотняется, наматываясь на пришедший из цитоплазмы новосинтезированный N-белок (7). В мембранных (эндосомных) пузырьках готовые частицы подплывают изнутри к клеточной мембране, пузырьки сливаются с ней, и новые вирусные частицы оказываются снаружи клетки (8)

Почему SARS-CoV-2 такой особенный

Описанные выше трюки коронавируса выглядят весьма хитроумными, но в действительности примерно так ведут себя очень многие вирусы. За миллиарды лет гонки вооружений со своими хозяевами они идеально отточили навыки захвата и порабощения чужих клеток[9]. И все же у некоторых вирусов это получается лучше остальных. Например, из семи известных коронавирусов, которые способны заражать человека, только три – SARS, MERS и нынешний SARS-CoV-2 – представляют серьезную опасность, остальные же вызывают банальные простуды. SARS убил 10 % всех заразившихся, MERS – 34 %, от SARS-CoV-2 умирает, видимо, около 1 % инфицированных (точнее подсчитать можно будет только после того, как закончится активная фаза эпидемии). При этом пандемию устроил самый безобидный из «суровых» коронавирусов – SARS-CoV-2, – потому что научился отлично передаваться от человека к человеку. SARS и тем более MERS делали это существенно хуже.

Почему именно эти три вируса выбились в печальные лидеры и что такого особенного есть в SARS-CoV-2? Как минимум частично на эти вопросы ответил{15} один из самых цитируемых биоинформатиков мира Евгений Кунин. Он и его группа решили выяснить, чем смертельные коронавирусы отличаются от остальных. Исследователи сравнили геномные последовательности всех семи «человеческих» коронавирусов и обнаружили 11 участков, которые отличают высоколетальные штаммы от нелетальных. Эти участки находились в N-белке – на него в вирусной частице намотана РНК – и шиповидном S-белке, том самом, который отвечает за связывание вируса с клеточным рецептором ACE2. По сравнению с безобидными коронавирусами, N-белок у опасных штаммов лучше проникает в ядро, так как у него «прицельно» изменяется особая последовательность (NLS-участок, nuclear localization sequence), которую узнают белки, насквозь пронизывающие ядерную мембрану и избирательно пропускающие в и из ядра те или иные соединения.

То, что коронавирусные N-белки несут NLS-участки и умеют проникать в ядро клетки, которую они заразили, известно давно. Но вот зачем им это нужно – до сих пор не ясно. Геном коронавирусов записан в молекуле РНК, и для его прочтения и тем более намотки на нуклеокапсидный белок проникать в ядро не нужно: все необходимые клеточные ферменты есть в цитоплазме. Одна из гипотез предполагает, что, попав в ядро, N-белки каким-то образом влияют на считывание собственных клеточных генов – например, мешают зараженной клетке привлекать клетки иммунной системы. Косвенно эту гипотезу подтверждает факт повышенной патогенности свиных коронавирусов, чьи белки тоже проникают в ядро.

Другие изменения затрагивают непосредственно «хватательную» часть S-белка. Замена нескольких аминокислот делает ее более пластичной – то есть эта область может немного изменять свою трехмерную укладку. Не исключено, что именно повышенная гибкость позволяет ей хорошо прикрепляться не только к летучемышиному рецептору, но и к человеческому. Благодаря такой универсальности уханьский коронавирус мог легко преодолеть межвидовой барьер и перепрыгнуть с летучей мыши на человека. Для сравнения: хватательная часть спайк-белка MERS куда более неповоротлива. Именно поэтому, вероятно, он лишь изредка может перескочить с верблюда на человека и очень плохо передается между людьми.

НЕИСПОЛНИМОЕ ЖЕЛАНИЕ

Очень многие, в том числе и подкованные в биологии, люди уверены, что со временем все паразиты приспосабливаются к хозяевам и перестают убивать их направо и налево. Увы, но это утверждение не имеет под собой оснований. Начать с того, что эта логика работает только в ситуации, когда хозяев ограниченное количество – а это точно не наш случай. Кроме того, коронавирус лучше всего передается до появления симптомов, пока хозяин в любом случае еще жив (мы подробно обсудим этот вопрос в следующих главах). Ну и наконец, мы в основном видим вокруг себя приспособившиеся друг к другу пары паразит – хозяин (то есть первый использует последнего, но не убивает) не потому, что это обязательный конечный результат паразитизма. Просто пары, которые не приспособились, вымерли. Как вымерли 99,9 % всех видов, которые когда-либо существовали на планете. Во Вселенной нет органа, который бы выдавал гарантии эволюционного успеха, и, если паразит «выбирает» слишком агрессивную стратегию, он вымирает (вместе с хозяевами). Считать, что раз мы наблюдаем в основном умеренный паразитизм, то это и есть эволюционная норма, – классическая ошибка выжившего.

Понимание, какие именно места в белках нового коронавируса определяют его самые опасные черты, может помочь в разработке лекарств или вакцины против него. Пока ученые и медики тестируют в основном уже давно известные вещества, часть из которых обладает общим противовирусным действием (точнее, его вроде бы удается обнаружить в культурах клеток), а часть и вовсе была разработана для борьбы с другими вирусами и для лечения нынешнего их пробуют применять, так сказать, по аналогии. Очевидно, что специфический препарат, прицельно созданный для нейтрализации конкретного патогенного механизма конкретного коронавируса, будет куда эффективнее. И теперь у исследователей есть зацепки, в какую сторону думать для разработки такого препарата. Подробнее поговорим об этом в главах «Где лекарство?» и «Где вакцина?».

Благодаря приличной заразности и относительно высокой летальности SARS-CoV-2 достиг куда больших успехов на пандемической ниве, чем его более смертельные родственники. Можно сказать, что уханьский паразит – «гибрид» опасных и безобидных коронавирусов, удачно сочетающий их лучшие черты. Окажется ли он при этом победителем по вирусному гамбургскому счету – покажет время. Эволюционный успех для вируса определяется его способностью как можно шире распространиться и сохраняться в популяции хозяев как можно дольше. Пока простудные коронавирусы с этой точки зрения выглядят более удачливыми. Они не только куда более распространены, но еще и не подвергаются гонениям, так как почти никогда не убивают хозяев. А на уничтожение SARS-CoV-2 брошены невиданные денежные и человеческие ресурсы. Впрочем, чем окончится предприятие по изведению коронавируса, пока не ясно.

Глава 3. Откуда он взялся

Как бы ни казалось странным, но большинство вирусов мы получили от животных. Впрочем, странным это кажется лишь на первый взгляд. Если поразмышлять еще немного, странной как раз покажется идея уникальных человечьих вирусов. Люди всего лишь один вид из примерно 5,3 млн обитающих на планете эукариот[10] – грубо говоря, всех, кроме вирусов, бактерий и архей{16}. По другим оценкам{17}, число видов на Земле ближе к 8,7 млн. А если вспомнить, что примерно 99,9 % всех когда-либо живших видов вымерло, счет пойдет на миллиарды. И даже если отбросить совсем далеких от нас существ вроде растений, грибов, простейших и так далее и оставить только млекопитающих и птиц, цифры все равно будут космическими. И у каждого из этих миллионов видов есть вирусы. С одной стороны, как мы убедились в прошлой главе, раз вцепившись в какого-нибудь хозяина, вирус изо всех сил старается приспособиться к нему, шаг за шагом обходя всевозможные защитные механизмы. Это часто приводит к узкой специализации. Однако, если в результате случайного события патоген окажется в другом организме, который не сможет сразу дать отпор и позволит вирусу хоть немного размножиться, у него появляется колоссальное преимущество перед остальными за счет расширения кормовой базы. Поэтому перескоки вирусов с одного хозяина на другого случаются, хотя и не очень часто. Но, учитывая гигантское число потенциальных хозяев и самих вирусов, даже такие редкие прыжки приводят к тому, что множество вирусов не ограничиваются одним носителем, а умеют заражать сразу несколько порой довольно далеких видов. Уникальная способность вирусов стремительно изменяться дополнительно помогает им, позволяя быстро подстроиться под особенности биохимии нового хозяина.

Такие перескоки порой происходят буквально у нас на глазах. Например, долгие годы ученые были уверены, что парвовирус FPLV (от английского feline panleukopenia virus, вирус панлейкопении кошек) заражает только кошек и енотов. Однако в середине 1940-х болезнь, аналогичная той, что вызывается FPLV, была обнаружена у детенышей норок, причем летальность составила 80 %, примерно столько же, сколько у непривитых котят. Через 30 лет очень похожее заболевание выявили уже у собак, и это была настоящая пандемия, распространившаяся по всему миру за несколько месяцев{18}. Вирус норок назвали MEV, а собачью разновидность – CPV-2. Генетический анализ показал, что MEV и CPV-2 – потомки исходного вируса FPLV: мутации, которые отличают их от предка, позволяют «молодым» вирусам проникать в клетки новых хозяев и уходить от их иммунного ответа{19}.

Так что смена вирусом хозяина вполне рядовое событие. И вероятность, что этим новым хозяином окажется человек, очень немаленькая. По крайней мере, именно так было до тех пор, пока люди не отдалились от остальных обитателей планеты. В наши дни, когда самое дикое животное, которое большинство детей встречают в жизни – домашняя кошка, – кажется, что перенос инфекций из нетронутой природы людям маловероятен. Это в корне ошибочное представление.

Несмотря на урбанизацию, люди и животные продолжают тесно общаться. Более того, в последние годы шансы получить неприятные подарки от зверей и птиц только растут{20}. У этой контринтуитивной тенденции множество причин. Человечество увеличивается, и ему нужно место для жизни и выращивания сельскохозяйственных растений и животных. Освобождая территорию для новых деревень, полей и пастбищ, люди вырубают леса и встречаются с их обитателями, которые в норме избегают человека. Благодаря развитой торговле животные и птицы, как мертвые, так и еще нет, попадают в страны, отделенные друг от друга горами, океанами и огромными расстояниями. Еще 100 лет назад таких перевозок было намного меньше. Наконец, изменение климата заставляет множество видов массово мигрировать в новые места обитания. Из 335 новых инфекционных болезней, появившихся в период с 1940 по 2004 год, 60,3 % пришли к нам от животных[11]. Такие болезни называют зоонозами, и 71,8 % из них перескочили на людей от диких животных{21}.

Но разные вирусы перепрыгивают с хозяина на хозяина с неодинаковой вероятностью. Среди животных «талант» выращивать способные к межвидовым прыжкам вирусы тоже распределен неравномерно. В случае нынешней эпидемии оба этих фактора максимально благоприятствовали появлению нового человеческого вируса – в том смысле, что сочетание коронавирусов и летучих мышей уже очень давно обещало породить что-нибудь этакое. Впервые об этом всерьез забеспокоилась группа китайских исследователей под руководством Ши Чжэнли из Института вирусологии в Ухане. Исследовательница уже долгие годы изучает вирусы летучих мышей, Ши и ее коллеги регулярно отправляются в экспедиции в самые глухие пещеры Китая, где водятся разные виды этих млекопитающих. Ученые ловят их, привозят в лабораторию, выделяют из крови вирусы и исследуют. За любовь к рукокрылым коллеги прозвали Ши Чжэнли Batwoman, то есть «Женщина – летучая мышь».

В 2005 году Ши и соавторы опубликовали статью{22} в Science, одном из самых авторитетных журналов, где печатаются работы ученых, занимающихся естественными науками. В своем исследовании Ши и коллеги сравнили фрагменты расшифрованных геномов вирусов, выделенных из 408 летучих мышей девяти разных видов, которых они отловили в четырех китайских провинциях. Авторы установили, что, хотя глобально геномы вирусов разных рукокрылых схожи, несколько участков очень сильно отличаются друг от друга. Один из вариабельных фрагментов находился в последовательности S-белка, того самого, который необходим для связывания с рецептором клетки-хозяина и проникновения в нее. Если в общем геномы вирусов разных летучих мышей схожи более чем на 90 %, то в этой части доля отличий возрастала до 40 %. Как отметили Ши и коллеги, столь значительная вариабельность хватательной части S-белка указывает, что мышиные коронавирусы обладают большим потенциалом по части смены хозяев. Главными подозреваемыми, работающими как инкубатор новых вирусов, ученые назвали насекомоядных подковоносых летучих мышей, которые встречаются практически по всему миру. Более того, авторы предложили возможный механизм перескока мышиных вирусов на человека.

Местом встречи коронавирусов подковоносых мышей и их потенциальных хозяев-людей исследователи назвали китайские рынки, где торгуют живностью (в блюдах китайской кухни в качестве ингредиентов используются, кажется, все известные представители флоры и фауны). Сами подковоносы не очень популярны, а вот разнообразные крыланы расходятся в буквальном смысле как горячие пирожки. В дикой природе (а также в вольерах и клетках) крыланы встречаются с подковоносами и могут заражаться их вирусами. Дальнейшее только вопрос времени: через укус, помет или плохо прожаренное мясо паразиты могут относительно легко проникнуть в организм человека. А учитывая склонность коронавирусов к мутациям, и особенно к мутациям в S-белке, вполне может случиться, что любитель экзотических блюд, охотник или продавец получит вирусный штамм, способный цепляться не только за мышиные, но и за человечьи рецепторы.

И хотя точное место, откуда летучемышиные коронавирусы перескочили на людей, неизвестно (версию про уханьский рынок морепродуктов поддерживают не все ученые), само по себе предсказание, что однажды какой-нибудь из сожителей рукокрылых захочет сменить партнера, сбылось с пугающей точностью. Более того, за два года до эпидемии другая группа китайских исследователей привела веские доказательства того, что коронавирусы летучих мышей регулярно предпринимают попытки найти себе новый дом. Изучив образцы крови людей, живущих поблизости от крупных мышиных колоний, исследователи обнаружили у 2,7 % жителей антитела к летучемышиным коронавирусам{23}. Но эти штаммы, очевидно, были не слишком удачливыми и не смогли закрепиться в человеке. В отличие от SARS-CoV-2.

Но почему именно летучие мыши? Что заставило Ши и других ученых сосредоточиться на этих странных животных? Причин сразу несколько. Первая: рукокрылых страшно много. Они составляют около 20 % от всех известных видов млекопитающих. То есть каждый пятый вид млекопитающих на планете – какая-нибудь летучая мышь. Больше видов только у грызунов. Если считать в штуках, цифры тоже впечатляют: рукокрылые любят жить колониями, многие из которых насчитывают десятки миллионов особей, как, например, крупнейшее из известных общежитий летучих мышей в пещере Брэкен возле техасского Остина, где обитают около 30 млн этих животных. Пол и стены мышиных убежищ покрыты густым слоем помета, поэтому в пещеры регулярно наведываются фермеры. Экскременты рукокрылых – ценное (и, главное, бесплатное) удобрение для полей. Версия, что первыми заразившимися были не продавцы летучих мышей, а китайские фермеры, жаждущие удобрять поля биопродуктом, также рассматривается как одна из приоритетных.

Сноски
1 Хотя у недавно открытых гигантских вирусов он есть.
2 В книге я часто употребляю выражения вроде «вирусы увеличивают мутагенность» или «эволюция придумала хитрый ход». Но важно понимать: ни у вирусов, ни у эволюции, ни у природы нет сознательной воли развиваться в том или ином направлении. Просто некоторые случайно возникшие изменения закрепляются, так как способствуют лучшему выживанию и/или размножению. Череда таких циклов изменений и отбора под давлением среды и создает впечатление направленного процесса.
3 На самом деле, сравнивая SASR-CoV-2 с короной, авторы названия, скорее всего, имели в виду солнечную корону. Но вариант с морской миной по-прежнему представляется более удачным.
4 Хотя существует и форма, которая не закреплена в мембране.
5 В этом месте вдумчивый читатель может спросить: если ACE2 входит в систему, отвечающую за давление, что он делает во всех этих органах? Правильный ответ на это: мы точно не знаем. Биологические системы очень сложны, и нередко один и тот же игрок задействован в самых разных процессах, а сами эти процессы сложно влияют друг на друга. После эпидемии SARS предпринимались cлабые попытки разобраться, какие еще функции выполняет в организме ACE2 (E. Braun and D. Sauter, “Furin-mediated protein processing in infectious diseases and cancer,” Clin. Transl. Immunol., vol. 8, no. 8, Jan. 2019.), однако особого развития подобные работы не получили и ограничиваются в основном животными моделями.
6 Повторюсь: вирусы не обладают разумом и не сидят ночами, планируя, как бы поработить еще больше жертв. Этот механизм они получили в ходе случайных мутаций или рекомбинации (обмена кусками генетического материала) с другими вирусами. Просто так удобнее описывать происходящее.
7 По названию белка можно узнать, что он делает. Окончание -аза указывает на то, что белок обладает ферментативной активностью, то есть может катализировать какую-нибудь химическую реакцию. Первая часть названия отражает субстрат, реакцию с которым катализирует фермент, – в данном случае это протеины, то есть белки. По тому же принципу фермент, липаза катализирует расщепление жиров, а рибонуклеаза, или РНКаза, отвечает за расщепление рибонуклеиновых кислот. На самом деле это только одна из классификаций (есть еще, например, классификация по типу катализируемой реакции), но знать именно ее полезно, так как она позволяет, не залезая в «Википедию» или учебник биохимии, сразу понять, какую функцию выполняет тот или иной белок.
8 Столь существенная разница связана не с тем, что ДНК-полимеразы не допускают ошибок: допускают, но умеют самостоятельно исправлять их.
9 Хотя, разумеется, даже у самых коварных патогенов это получается не в 100 % случаев.
10 Если говорить о более строгом определении, эукариоты – это существа, большая часть ДНК которых спрятана в ядре – особом пространстве, отделенном от цитоплазмы мембраной. В противовес им у прокариот, к которым относятся бактерии и археи, такого выделенного пространства для хранения ДНК нет. Геном прокариот свободно «болтается» в цитоплазме либо может быть связан с какими-то структурами, но он в любом случае не отделен от цитоплазмы мембраной стенкой.
11 Впрочем, в подавляющем числе случаев эти патогены эффективно не распространялись среди людей, и болезни ограничивались очень небольшим количеством зараженных.
1 Хотя у недавно открытых гигантских вирусов он есть.
2 В книге я часто употребляю выражения вроде «вирусы увеличивают мутагенность» или «эволюция придумала хитрый ход». Но важно понимать: ни у вирусов, ни у эволюции, ни у природы нет сознательной воли развиваться в том или ином направлении. Просто некоторые случайно возникшие изменения закрепляются, так как способствуют лучшему выживанию и/или размножению. Череда таких циклов изменений и отбора под давлением среды и создает впечатление направленного процесса.
3 На самом деле, сравнивая SASR-CoV-2 с короной, авторы названия, скорее всего, имели в виду солнечную корону. Но вариант с морской миной по-прежнему представляется более удачным.
4 Хотя существует и форма, которая не закреплена в мембране.
5 В этом месте вдумчивый читатель может спросить: если ACE2 входит в систему, отвечающую за давление, что он делает во всех этих органах? Правильный ответ на это: мы точно не знаем. Биологические системы очень сложны, и нередко один и тот же игрок задействован в самых разных процессах, а сами эти процессы сложно влияют друг на друга. После эпидемии SARS предпринимались cлабые попытки разобраться, какие еще функции выполняет в организме ACE2 (E. Braun and D. Sauter, “Furin-mediated protein processing in infectious diseases and cancer,” Clin. Transl. Immunol., vol. 8, no. 8, Jan. 2019.), однако особого развития подобные работы не получили и ограничиваются в основном животными моделями.
6 Повторюсь: вирусы не обладают разумом и не сидят ночами, планируя, как бы поработить еще больше жертв. Этот механизм они получили в ходе случайных мутаций или рекомбинации (обмена кусками генетического материала) с другими вирусами. Просто так удобнее описывать происходящее.
7 По названию белка можно узнать, что он делает. Окончание -аза указывает на то, что белок обладает ферментативной активностью, то есть может катализировать какую-нибудь химическую реакцию. Первая часть названия отражает субстрат, реакцию с которым катализирует фермент, – в данном случае это протеины, то есть белки. По тому же принципу фермент, липаза катализирует расщепление жиров, а рибонуклеаза, или РНКаза, отвечает за расщепление рибонуклеиновых кислот. На самом деле это только одна из классификаций (есть еще, например, классификация по типу катализируемой реакции), но знать именно ее полезно, так как она позволяет, не залезая в «Википедию» или учебник биохимии, сразу понять, какую функцию выполняет тот или иной белок.
8 Столь существенная разница связана не с тем, что ДНК-полимеразы не допускают ошибок: допускают, но умеют самостоятельно исправлять их.
9 Хотя, разумеется, даже у самых коварных патогенов это получается не в 100 % случаев.
10 Если говорить о более строгом определении, эукариоты – это существа, большая часть ДНК которых спрятана в ядре – особом пространстве, отделенном от цитоплазмы мембраной. В противовес им у прокариот, к которым относятся бактерии и археи, такого выделенного пространства для хранения ДНК нет. Геном прокариот свободно «болтается» в цитоплазме либо может быть связан с какими-то структурами, но он в любом случае не отделен от цитоплазмы мембраной стенкой.
11 Впрочем, в подавляющем числе случаев эти патогены эффективно не распространялись среди людей, и болезни ограничивались очень небольшим количеством зараженных.
Комментарии
1 S. Duffy, “Why are RNA virus mutation rates so damn high?” PloS Biol., vol. 16, no. 8, p. e3000003, Aug. 2018.
2 C. A. Suttle, “Viruses in the sea,” Nature, vol. 437, no. 7057, pp. 356–361, Sep. 2005.
3 K. Wang et al., “SARS-CoV-2 invades host cells via a novel route: CD147-spike protein,” bioRxiv, p. 2020.03.14.988345, Jan. 2020.
4 X. Wang et al., “SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion,” Cell. Mol. Immunol., Apr. 2020.
5 H. Wang et al., “SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway,” Cell Res., vol. 18, no. 2, pp. 290–301, Feb. 2008.
6 M. Hoffmann et al., “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor,” Cell, vol. 181, no. 2, pp. 271–280.e8, Apr. 2020.
7 J. Shang et al., “Cell entry mechanisms of SARS-CoV-2,” Proc. Natl. Acad. Sci., vol. 117, no. 21, pp. 11727–11734, May 2020.
8 E. Braun and D. Sauter, “Furin-mediated protein processing in infectious diseases and cancer,” Clin. Transl. Immunol., vol. 8, no. 8, Jan. 2019.
9 K. Kuba, Y. Imai, and J. M. Penninger, “Multiple Functions of Angiotensin-Converting Enzyme 2 and Its Relevance in Cardiovascular Diseases,” Circ. J., vol. 77, no. 2, pp. 301–308, 2013.
10 T. Ivanova et al., “Optimization of Substrate-Analogue Furin Inhibitors,” ChemMedChem, vol. 12, no. 23, pp. 1953–1968, Dec. 2017.
11 Y. M. Bar-On, A. Flamholz, R. Phillips, and R. Milo, “SARS-CoV-2 (COVID-19) by the numbers,” Elife, vol. 9, Apr. 2020.
12 K. B. Anand, S. Karade, S. Sen, and R. M. Gupta, “SARS-CoV-2: Camazotz’s Curse,” Med. J. Armed Forces India, vol. 76, no. 2, pp. 136–141, Apr. 2020.
13 D. E. Gordon et al., “A SARS-CoV-2 protein interaction map reveals targets for drug repurposing,” Nature, vol. 583, no. 7816, pp. 459–468, Jul. 2020.
14 Y. Zhang et al., “The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC–I,” bioRxiv, p. 2020.05.24.111823, Jan. 2020.
15 A. B. Gussow, N. Auslander, G. Faure, Y. I. Wolf, F. Zhang, and E. V. Koonin, “Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses,” Proc. Natl. Acad. Sci., vol. 117, no. 26, pp. 15193–15199, Jun. 2020.
16 M. J. Costello, R. M. May, and N. E. Stork, “Can We Name Earth’s Species Before They Go Extinct?” Science, vol. 339, no. 6118, pp. 413–416, Jan. 2013.
17 K. J. Locey and J. T. Lennon, “Scaling laws predict global microbial diversity,” Proc. Natl. Acad. Sci., vol. 113, no. 21, pp. 5970–5975, May 2016.
18 Y. Ikeda, “Feline Host Range of Canine parvovirus: Recent Emergence of New Antigenic Types in Cats,” Emerg. Infect. Dis., vol. 8, no. 4, pp. 341–346, Apr. 2002.
19 É. Leal et al., “Regional adaptations and parallel mutations in Feline panleukopenia virus strains from China revealed by nearly-full length genome analysis,” PLoS One, vol. 15, no. 1, p. e0227705, Jan. 2020.
20 K. E. Jones et al., “Global trends in emerging infectious diseases,” Nature, vol. 451, no. 7181, pp. 990–993, Feb. 2008.
21 K. E. Jones et al., “Global trends in emerging infectious diseases,” Nature, vol. 451, no. 7181, pp. 990–993, Feb. 2008.
22 W. Li, “Bats Are Natural Reservoirs of SARS-Like Coronaviruses,” Science (80-.)., vol. 310, no. 5748, pp. 676–679, Oct. 2005.
23 N. Wang et al., “Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China,” Virol. Sin., vol. 33, no. 1, pp. 104–107, Feb. 2018.
1 S. Duffy, “Why are RNA virus mutation rates so damn high?” PloS Biol., vol. 16, no. 8, p. e3000003, Aug. 2018.
2 C. A. Suttle, “Viruses in the sea,” Nature, vol. 437, no. 7057, pp. 356–361, Sep. 2005.
3 K. Wang et al., “SARS-CoV-2 invades host cells via a novel route: CD147-spike protein,” bioRxiv, p. 2020.03.14.988345, Jan. 2020.
4 X. Wang et al., “SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion,” Cell. Mol. Immunol., Apr. 2020.
5 H. Wang et al., “SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway,” Cell Res., vol. 18, no. 2, pp. 290–301, Feb. 2008.
6 M. Hoffmann et al., “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor,” Cell, vol. 181, no. 2, pp. 271–280.e8, Apr. 2020.
7 J. Shang et al., “Cell entry mechanisms of SARS-CoV-2,” Proc. Natl. Acad. Sci., vol. 117, no. 21, pp. 11727–11734, May 2020.
8 E. Braun and D. Sauter, “Furin-mediated protein processing in infectious diseases and cancer,” Clin. Transl. Immunol., vol. 8, no. 8, Jan. 2019.
9 K. Kuba, Y. Imai, and J. M. Penninger, “Multiple Functions of Angiotensin-Converting Enzyme 2 and Its Relevance in Cardiovascular Diseases,” Circ. J., vol. 77, no. 2, pp. 301–308, 2013.
10 T. Ivanova et al., “Optimization of Substrate-Analogue Furin Inhibitors,” ChemMedChem, vol. 12, no. 23, pp. 1953–1968, Dec. 2017.
11 Y. M. Bar-On, A. Flamholz, R. Phillips, and R. Milo, “SARS-CoV-2 (COVID-19) by the numbers,” Elife, vol. 9, Apr. 2020.
12 K. B. Anand, S. Karade, S. Sen, and R. M. Gupta, “SARS-CoV-2: Camazotz’s Curse,” Med. J. Armed Forces India, vol. 76, no. 2, pp. 136–141, Apr. 2020.
13 D. E. Gordon et al., “A SARS-CoV-2 protein interaction map reveals targets for drug repurposing,” Nature, vol. 583, no. 7816, pp. 459–468, Jul. 2020.
14 Y. Zhang et al., “The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC–I,” bioRxiv, p. 2020.05.24.111823, Jan. 2020.
15 A. B. Gussow, N. Auslander, G. Faure, Y. I. Wolf, F. Zhang, and E. V. Koonin, “Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses,” Proc. Natl. Acad. Sci., vol. 117, no. 26, pp. 15193–15199, Jun. 2020.
16 M. J. Costello, R. M. May, and N. E. Stork, “Can We Name Earth’s Species Before They Go Extinct?” Science, vol. 339, no. 6118, pp. 413–416, Jan. 2013.
17 K. J. Locey and J. T. Lennon, “Scaling laws predict global microbial diversity,” Proc. Natl. Acad. Sci., vol. 113, no. 21, pp. 5970–5975, May 2016.
18 Y. Ikeda, “Feline Host Range of Canine parvovirus: Recent Emergence of New Antigenic Types in Cats,” Emerg. Infect. Dis., vol. 8, no. 4, pp. 341–346, Apr. 2002.
19 É. Leal et al., “Regional adaptations and parallel mutations in Feline panleukopenia virus strains from China revealed by nearly-full length genome analysis,” PLoS One, vol. 15, no. 1, p. e0227705, Jan. 2020.
20 K. E. Jones et al., “Global trends in emerging infectious diseases,” Nature, vol. 451, no. 7181, pp. 990–993, Feb. 2008.
21 K. E. Jones et al., “Global trends in emerging infectious diseases,” Nature, vol. 451, no. 7181, pp. 990–993, Feb. 2008.
22 W. Li, “Bats Are Natural Reservoirs of SARS-Like Coronaviruses,” Science (80-.)., vol. 310, no. 5748, pp. 676–679, Oct. 2005.
23 N. Wang et al., “Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China,” Virol. Sin., vol. 33, no. 1, pp. 104–107, Feb. 2018.
Продолжить чтение